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Lecture 14- Logistic Regression
Lecturer: Lorenzo Rosasco

We consider logistic regression, that is Tikhonov regularization

min
w∈RD

Ê(fw) + λ‖w‖2, Ê(fw) =
1

n

n∑
i=1

`(yi, fw(xi)) (14.1)

where the loss function is `(y, fw(x)) = log(1 + e−yfw(x)), namely the logistic loss function.
Since the logistic loss function is differentiable the natural candidate to compute a mini-

mizer is a the gradient descent algorithm which we describe next.

14.1 Interlude: Gradient Descent and Stochastic Gra-

dient

Before starting let’s recall the following basic definition

• Gradient of G : RD → R,

∇G = (
∂G

∂w1
, . . . ,

∂G

∂wD
)

• Hessian of G : RD → R,

H(G)i,j =
∂2G

∂wi∂wj

• Jacobian of F : RD → RD

J(F )i,j =
∂F i

∂wj

Note that H(G) = J(∇G).

Consider the minimization problem

min
w∈RD

G(w) G : RD → R

when G is a differentiable (strictly convex) function. A general approach to find an approxi-
mate solution of the problem is the gradient descent (GD) algorithm, based on the following
iteration

wt+1 = wt − γ∇G(wt) (14.2)

for a suitable initialization w0. Above ∇G(w) is the gradient of G at w and γ is a positive
constant (or a sequence) called the step-size. Choosing the step-size appropriately ensures
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the iteration to converge to a minimizing solution. In particular, a suitable choice can be
shown to be

γ = 1/L,

where L is the Lipschitz constant of the gradient, that is L such that

‖∇G(w)−∇G(w′)‖ ≤ L‖w − w′‖.

It can be shown that L is less or equal than the biggest eigenvalue of the Hessian H(G)(w)
for all w. The term descent comes from the fact that it can be shown that

G(wt) ≥ G(wt+1).

A related technique is called stochastic gradient or also incremental gradient. To describe
this method, we consider an objective function is the form

G(w) =
n∑

i=1

gi(w), gi : RD → R, i = 1, . . . , n,

so that ∇G(w) =
∑n

i=1∇gi(w). The stochast gradient algorithm corresponds to replac-
ing (14.2) with

wt+1 = wt − γ∇git(wt)

where it denotes a deterministic or stochastic sequence of indices. In this case, the step size
needs to be chosen as sequence γt going to zero but not too fast. For example the choice
γt = 1/t can be shown to suffice.

14.2 Regularized Logistic Regression

The corresponding regularized empirical risk minimization problem is called regularized lo-
gistic regression. Its solution can be computed via gradient descent or stochastic gradient.
Note that

∇Ê(fw) =
1

n

n∑
i=1

xi
−yie−yix

T
i wt−1

1 + e−yix
T
i wt−1

=
1

n

n∑
i=1

xi
−yi

1 + eyix
T
i wt−1

so that, for w0 = 0, the gradient descent algorithm applied to (14.1) is

wt = wt−1 − γ

(
1

n

n∑
i=1

xi
−yi

1 + eyix
T
i wt−1

+ 2λwt−1

)
for t = 1, . . . T , where

1

n

n∑
i=1

−yixie−yix
T
i w

1 + e−yix
T
i w

+ 2λw = ∇(Ê(fw) + λ‖w‖2)

A direct computation shows that

J(∇Ê(fw)) =
1

n

n∑
i=1

xix
T
i `
′′
(yiw

Txi) + 2λI
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where `
′′
(a) = e−a

(1+e−a)2
≤ 1 is the second derivative of the function `(a) = log(1 + e−a). In

particular it can be shown that

L ≤ σmax(
1

n
XT

nXn + 2λI)

where σmax(A) is the largest eigenvalue of a (symmetric positive semidefinite) matrix A.

14.3 Kernel Regularized Logistic Regression

The vector of coefficients can be computed by the following iteration

ct = ct−1 − γB(ct−1), t = 1, . . . , T

for c0 = 0, and where B(ct−1) ∈ Rn with

B(ct−1)
i = − 1

n

yi

1 + eyi
∑n

k=1 x
T
k xickt−1

+ 2λcit−1.

Here again we choose a constant step-size. Note that

σmax(
1

n
XT

nXn + λI) = σmax(
1

n
XnX

T
n + λI) = σmax(

1

n
Kn + λI).

14.4 Logistic Regression and confidence estimation

We end recalling that a main feature of logistic regression is that, as discussed, The solution
of logistic regression can be shown to have probabilistic interpretation, in fact it can be
derived from the following model

p(1|x) =
ex

Tw

1 + exTw

where the right hand side is called logistic function. This latter observation can be used to
deduce a confidence from the on each prediction of the logistic regression estimator.
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