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Lecturer: Lorenzo Rosasco

We next introduce the support vector machine discussing one of the most classical learn-
ing algorithm, namely the perceptron algorithm.

16.1 Perceptron

The perceptron algorithm finds a linear classification rule according to the following iterative
procedure. Set w0 = 0 and update

wi = wi−1 + γyixi, if yiw
Txi ≤ 0

and let wi = wi−1 otherwise. In words, if an example is correctly classified, then the percep-
tron does not do anything. If the perceptron incorrectly classifies a training example, each
of the input weights is moved a little bit in the correct direction for that training example.
The above procedure can be seen as the stochastic (sub) gradient associated to the objective
function

n∑
i=1

| − yiwTxi|+

where the |a|+ = max{0, a}. Indeed if yiw
Txi < 0, then | − yiw

Txi|+ = −yiwTxi and
∇| − yiw

Txi|+ = −yixi, if yiw
Txi > 0, then | − yiw

Txi|+ = 0 hence ∇| − yiw
Txi|+ = 0.

Clearly an off-set can also be considered, replacing wTx by wTx+ b and analogous iteration
can ve derived.

The above method can be shown to converge for γ = const. if the data are linearly
separable. If the data are not separable with a constant step size the perception will typically
cycle. Moreover, the perceptron does not implement any specific form of regularization so
in general it is prone to overfit the data.

16.2 Margin

The quantity α = ywTx defining the objective function of the perceptron is a natural er-
ror measure and is sometimes called the functional margin. Next we look at a geometric
interpretation of the functional margin that will lead to a different derivation of Tikhonov
regularization for the so called hinge loss function. We begin considering a binary classifica-
tion problem where the classes are linearly separable.

Consider the decision surface D = {x : wTx = 0} defined by a vector w and x such that
wTx > 0. It is easy to check that, the projection of x on D is a point xw satisfying,

xw = x− β w

‖w‖
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where β is the distance between x and D. Clearly xw ∈ D so that

wT (x− β w

‖w‖
) = 0⇔ β =

wT

‖w‖
x.

If x is x such that wTx < 0 then β = − wT

‖w‖x, so that generally we have

β = y
wT

‖w‖
x

The above quantity is often called the geometric margin and clearly if ‖w‖ = 1 is coincides
with the geometric margin. Note that the margin is scale invariant, in the sense that β =
y w

T

‖w‖x = y 2wT

‖2w‖x, as is the decision rule sign(wTx).

16.3 Maximizing the Margin

Maximizing the margin is a natural approach to select a linear separating rule in the separable
case. More precisely consider

βw = min
i=1,...,n

βi, βi = yi
wT

‖w‖
xi, i = 1, . . . , n,

max
w∈RD

βw, subj. to, βw ≥ 0, ‖w‖ = 1. (16.1)

Note that the last constraint is needed to avoid the solution w =∞ (check what happens if
you consider a solution w and then scale it by a constant kw).

In the following we manipulate the above expression to obtain a problem of the form

min
w∈RD

F (w), Aw + c ≥ 0,

where F is convex, A is a matrix and c a vector. These are convex programming problem
which can efficiently solved.

We begin by rewriting problem (16.1) by introducing a dummy variable β = βw to obtain

max
(w,β)∈RD+1

β, subj. to, yi
wT

‖w‖
xi ≥ β; β ≥ 0, ‖w‖ = 1

(we are basically using the definition of minimum as the maximum of the infimal points).
We next would like to avoid the constraint ‖w‖ = 1. It can be shown that the above problem
is equivalent to considering

max
(w,α)∈RD+1

α

‖w‖
, subj. to, yiw

Txi ≥ α;α ≥ 0.

with β = α
‖w‖ , where the key idea is that the latter problem is scale invariant. More precisely

that we can always restrict yourselves to ‖w‖ = 1 by appropriately rescaling the solutions.

16-2



ISML-II Lecture 16 — Spring 2014

Using again scale invariance (check what happens if you consider a solution w and then scale
it by a constant (kw, kα)), without loss of generality we can fix α = 1 to obtain

max
w∈RD

1

‖w‖
, subj. to, yiw

Txi ≥ 1 , i = 1, . . . , n,

or equivalently

min
w∈RD

1

2
‖w‖2, subj. to, yiw

Txi ≥ 1 , i = 1, . . . , n, (16.2)

In the above reasoning we assumed data to be separable if this is not the case one could
considering slack variables ξ = (ξ1, . . . , ξn) to relax the constraints in the above problem,
considering

min
w∈RD,ξ∈Rn

1

2
‖w‖2 + C

n∑
i=1

, subj. to, yiw
Txi ≥ 1− ξi, ξi ≥ 0 , i = 1, . . . , n. (16.3)

16.4 From Max Margin to Tikhonov Regularization

Note that ξi = max{0, 1 − yiw
Txi} = |1 − yiw

Txi|+, for all i = 1, . . . , n. Then if we set
λ = 1

2Cn
, we have that problem (16.3) is equivalent to

min
w∈RD,ξ∈Rn

1

n

n∑
i=1

|1− yiwTxi|+ + λ‖w‖2.

16.5 Computations

The derivation of a solution to the SVM problem requires notions of convex optimization,
specifically considering so called Lagrangian duality. Indeed, it can be shown that the solu-
tion of problem (16.3) is of the form

w =
n∑
i=1

yiαixi

where the coefficients αi for i = 1, . . . , n are given by the solution of the so called dual
problem,

min
α∈Rn

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjx
T
i xj, subject to, 0 ≤ αi ≤ C, i = 1, . . . , n, (16.4)

where in particular it can be shown that

αi = 0 =⇒ yiw
Txi ≥ 1.
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16.6 Dealing with an off-set

Finally, it can be shown that the above reasoning can be generalized to consider an offset,
that is wTx+ b, in which case we simply have to add the constraint

n∑
i=1

yiαixi = 0

to the dual problem (16.4).
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