
ISML-II: Machine Learning Spring 2014

Lecture 4- Local Methods
Lecturer: Lorenzo Rosasco Scribe: Lorenzo Rosasco

We describe a simple yet efficient class of algorithms, the so called memory based learning
algorithms, based on the principle that nearby input points should have the similar/same
output.

4.1 Nearest Neighbor

Consider a training set
S = {(x1, y1), . . . , (xn, yn)}.

Given an input x̄, let
i′ = arg min

i=1,...,n
‖x̄− xi‖2

and define the nearest neighbor (NN) estimator as

f̂(x̄) = yi′ .

Every new input point is assigned the same output as its nearest input in the training set. We
add few comments. First, while in the above definition we simply considered the Euclidean
norm, the method can be promptly generalized to consider other measure of similarity among
inputs. For example if the input are binary strings, i.e. X = {0, 1}D, one could consider the
Hamming distance

dH(x, x̄) =
1

D

D∑
j=1

1[xj 6=x̄j ]

where xj is the j-th component of a string x ∈ X.
Second, the complexity of the algorithm for predicting any new point is O(nD)– recall that
the complexity of multiplying two D-dimensional vectors is O(D). Finally, we note that NN
can be fairly sensitive to noise. To see this it is useful to visualize the decision boundary of
the nearest neighbor algorithm.

4.2 K-Nearest Neighbor

Consider
dx̄ = (‖x̄− xi‖2)ni=1

the array of distances of a new point x̄ to the input points in the training set. Let

sx̄

4-1



ISML-II Lecture 4 — Spring 2014

be the above array sorted in increasing order and

Ix̄

the corresponding vector of indices, and

Kx̄ = {I1
x̄, . . . , I

K
x̄ }

be the array of the first K entries of Ix̄. The K-nearest neighbor estimator (KNN) is defined
as,

f̂(x̄) =
∑
i′∈Kx̄

yi′ ,

or f̂(x̄) = 1
K

∑
i′∈Kx̄

yi′ . In classification KNN can be seen as a voting scheme among the K
nearest neighbors and K is taken to be odd to avoid ties. The parameter K controls the
stability of the KNN estimate: when K is small the algorithm is sensitive to the data (and
simply reduces to NN for K = 1). When K increases the estimator becomes more stable.
In classification, it eventually simply becomes the ratio of the number of elements for each
class. The question of how to best choose K will be the subject of a future discussion.

4.3 Parzen Windows

In KNN each of the K neighbors has equal weights in determining the output of a new point.
A more general approach is to consider estimators of the form,

f̂(x̄) =

∑n
i=1 yik(x̄, xi)∑n
i=1 k(x̄, xi)

,

where k : X ×X → [0, 1] is a suitable function, which can be seen as a similarity measure
on the input points. The function k defines a window around each point and is sometimes
called a Parzen window. A classification rule is obtained considering the sign of f̂(x̄).
In many examples the function k depends on the distance ‖x− x′‖, x, x′ ∈ X. For example,

k(x′, x) = 1‖x−x′‖≤r.

This choice induce a Parzen window analogous to KNN, here the parameter K is replaced
by the radius r. More generally it is interesting to have a decaying weight for point which
are further away. For example considering

k(x′, x) = (1− ‖x− x′‖)+1‖x−x′‖≤r,

where (a)+ = a, if a > 0 and (a)+ = 0, otherwise. Another possibility is to consider fast
decaying functions such as:

Gaussian k(x′, x) = e−‖x−x
′‖2/2σ2

.

or
Exponential k(x′, x) = e−‖x−x

′‖/
√

2σ.

In all the above methods there is a parameter r or σ that controls the influence that each
neighbor has on the prediction.

4-2



ISML-II Lecture 4 — Spring 2014

4.4 High Dimensions

The following simple reasoning highlights a phenomenon which is typical of dealing with
high dimensional learning problems. Consider a unit cube in D dimensions, and a smaller
cube of edge e. How shall we choose e to capture 1% of the volume of the larger cube?
Clearly, we need e = D

√
.01. For example e = .63 for D = 10 and e = .95 for D = 100.

The edge of the small cube is virtually the same length of that of the large cube. The above
example illustrates how in high dimensions our intuition of neighbors and neighborhoods is
challenged.

4-3


