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In this class we introduce a class of learning algorithms based Tikhonov regularization,
a.k.a. penalized empirical risk minimization and regularization. In particular, we focus on
the algorithm defined by the square loss.

7.1 Regularized Least Squares

We consider the following algorithm

min
w∈RD

1

n

n∑
i=1

(yi − wTxi))2 + λwTw, λ ≥ 0. (7.1)

A motivation for considering the above scheme is to view the empirical error

1

n

n∑
i=1

(yi − wTxi))2,

as a proxy for the expected error∫
dxdyp(x, y)(y − wTx))2.

The term wTw is a regularizer and help preventing overfitting.
The term wTw = ‖w‖2 is called regularizer and controls the stability of the solution.

The parameter λ balances the error term and the regularizer. Algorithm (7.1) is an instance
of Tikhonov regularization, also called penalized empirical risk minimization. We have im-
plicitly chosen the space of possible solution, called the hypotheses space, to be the space of
linear functions, that is

H = {f : RD → R : ∃w ∈ RD such that f(x) = xTw, ∀x ∈ RD},

so that finding a function fw reduces to finding a vector w. As we will see in the following,
this seemingly simple example will be the basis for much more complicated solutions.

7.2 Computations

In this case it is convenient to introduce the n times D matrix Xn, where the rows are the
input points, and the n by 1 vector Yn where the entries are the corresponding outputs.
With this notation

1

n

n∑
i=1

(yi − wTxi))2 =
1

n
‖Yn −Xnw‖2.
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A direct computation shows that the gradient with respect to w of the empirical risk and
the regularizer are respectively

− 2

n
XT
n (Yn −Xnw), and, 2w.

Then, setting the gradient to zero, we have that the solution of regularized least squares
solves the linear system

(XT
nXn + λnI)w = XT

n Yn.

Several comments are in order. First, several methods can be used to solve the above linear
systems, Choleski decomposition being the method of choice, since the matrix XT

nXn + λI
is symmetric and positive definite. The complexity of the method is essentially O(nd2)
for training and O(d) for testing. The parameter λ controls the invertibility of the matrix
(XT

nXn + λnI).

7.3 Interlude: Linear Systems

Consider the problem
Ma = b,

where M is a D by D matrix and a, b vectors in RD. We are interested in determing a
satisfying the above equation given M, b. If M is invertible, the solution to the problem is

a = M−1b.

• If M is a diagonal M = diag(σ1, . . . , σD) where σi ∈ (0,∞) for all i = 1, . . . , D, then

M−1 = diag(1/σ1, . . . , 1/σD), (M + λI)−1 = diag(1/(σ1 + λ), . . . , 1/(σD + λ)

• If M is symmetric and positive definite, then considering the eigendecomposition

M−1 = V ΣV T , Σ = diag(σ1, . . . , σD), V V T = I,

then
M−1 = V Σ−1V T , Σ−1 = diag(1/σ1, . . . , 1/σD),

and
(M + λI)−1 = V ΣλV

T , Σλ = diag(1/(σ1 + λ), . . . , 1/(σD + λ)

The ratio σD/σ1 is called the condition number of M .

7.4 Dealing with an Offset

When considering linear models, especially in relatively low dimensional spaces, it is inter-
esting to consider an offset, that is wTx+ b. We shall ask the question of how to estimate b
from data. A simple idea is to simply augment the dimension of the input space, considering
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x̃ = (x, 1) and w̃ = (w, b). While this is fine if we do not regularize, if we do then we still
tend to prefer linear functions passing through the origin, since the regularizer becomes

‖w̃‖2 = ‖w‖2 + b2.

In general we might not have reasons to believe that the model should pass through the
origin, hence we would like to consider an offset and still regularize considering only ‖w‖2,
so that the offset is not penalized. Note that the regularized problem becomes

min
(w,b)∈RD+1

1

n

n∑
i=1

(yi − wTxi − b)2 + λ‖w‖2.

The solution of the above problem is particularly simple when considering least squares.
Indeed, in this case it can be easily proved that a solution w∗, b∗ of the above problem is
given by

b∗ = ȳ − x̄Tw∗

where ȳ = 1
n

∑n
i=1 yi, x̄ = 1

n

∑n
i=1 xi and w∗ solves

min
w∈RD+1

1

n

n∑
i=1

(yci − wTxci)2 + λ‖w‖2.

where yci = y − ȳ and xci = x− x̄ for all i = 1, . . . , n.
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