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Lecture 3- Regularization Network I: Linear Case
Lecturer: F.Odone–L. Rosasco

In this class we introduce a class of learning algorithms based on empirical risk mini-
mization and regularization.

3.1 Empirical Risk Minimization

Among different approaches to design learning algorithms, empirical risk minimization (ERM)
is probably the most popular one. The general idea behind this class of methods is to consider
the empirical error

Ê(f) =
1

n

n∑
i=1

`(yi, f(xi)),

as a proxy for the expected error

E(f) = E[`(y, f(x))] =

∫
dxdyp(x, y)`(y, f(x)).

Recall that ` is a loss function and measure the price we pay predicting f(x) when in fact
the right label is y. Also, recall that the expected error cannot be directly computed since
the data distribution is fixed but unknown.

In practice, to turn the above idea in an actual algorithm we need to fix a suitable
hypotheses space H on which we will minimize Ê .

3.2 Hypotheses Space

The hypotheses space should be such that computations are feasible, at the same time it
should be rich since the complexity of the problem is not known a priori. The simplest
example of hypotheses space is the space of linear functions, that is

H = {f : RD → R : ∃w ∈ RD such that f(x) = xTw, ∀x ∈ RD}.

Each function f is defined by a vector w and we let fw(x) = xTw. As we will see in
the following, this seemingly simple example will be the basis for much more complicated
solutions.

If the hypotheses space is rich enough, solely minimizing the empirical risk is not enough
to ensure a generalizing solution. Indeed, simply solving ERM would lead to estimators
which are highly dependent on the data and could overfit. Regularization is a general class
of techniques that allow to restore stability and ensure generalization.
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3.3 Tikhonov regularization

We consider the following Tikhonov regularization scheme,

min
w∈RD

Ê(fw) + λ‖w‖2. (3.1)

The above scheme describes a large class of methods sometimes called Regularization Net-
works. The term ‖w‖2 is called regularizer and controls the stability of the solution. The
parameter λ balances the error term and the regularizer.

Different classes of methods are induced by the choice of different loss functions

3.4 Regularized Least Squares

Consider `(y, fw(x)) = (y − fw(x))2.The corresponding regularized empirical risk minimiza-
tion problem defines the regularized least squares algorithm, a.k.a. ridge regression. In this
case it is convenient to introduce the n times D matrix Xn, where the rows are the input
points, and the n by 1 vector Yn where the entries are the corresponding outputs. With this
notation

Ê(fw) =
1

n
‖Yn −Xnw‖2.

A direct computation shows that the gradient with respect to w of the empirical risk and
the regularizer are respectively

− 2

n
XT
n (Yn −Xnw), and, 2w.

Then, setting the gradient to zero, we have that the solution of regularized least squares
solves the linear system

(XT
nXn + λnI)w = XT

n Yn.

Several comments are in order. First, several methods can be used to solve the above linear
systems, Choleski decomposition being the method of choice, since the matrix XT

nXn + λI
is symmetric and positive definite. The complexity of the method is essentially O(nd2)
for training and O(d) for testing. The parameter λ controls the invertibility of the matrix
(XT

nXn + λnI).

3.5 Regularized Logistic Regression

Consider `(y, fw(x)) = log(1+e−yfw(x)), namely the logistic loss function. The corresponding
regularized empirical risk minimization problem is called regularized logistic regression. Its
solution can be computed via gradient descent. For w0 = 0, let

wt = wt−1 −
γ

n

(
n∑
i=1

−yixie−yix
T
i wt−1

1 + e−yix
T
i wt−1

+ 2λwt−1

)
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for t = 1, . . . T , where

1

n

n∑
i=1

−yixie−yix
T
i w

1 + e−yix
T
i w

+ 2λw = ∇(Ê(fw) + λ‖w‖2)

The solution of logistic regression can be shown to have probabilistic interpretation, in fact
it can be derived from the following model

p(1|x) =
ex

Tw

1 + exTw

where the right hand side is called logistic function. This latter observation can be used to
deduce a confidence from the on each prediction of the logistic regression estimator.

3.6 Support Vector Machines

Consider the so called hinge loss `(y, fw(x)) = |1 − yfw(x)|+, where |a|+ = a, if a > 0 and
|a|+ = 0, otherwise. The corresponding regularized empirical risk minimization problem
defines the Support Vector Machines algorithm. The following formulation is sometimes
considered

min
w∈RD

‖w‖D + C
n∑
i=1

ξi

subject to, yi(x
T
i w) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , n.

which can be shown to be equivalent to that in Equation (3.1) for C = 1
λn

(and clearly
` being the hinge loss). The derivation of a computational procedure to solve the SVM
minimization problem requires notions from convex optimization, beyond the scope of this
brief introduction. Indeed, it can be shown that the solution of the SVM problem is of the
form

w =
n∑
i=1

αiyixi

where the coefficients α1, . . . , αn are given by the solution of the following quadratic pro-
gramming problem

max
α∈Rn

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjx
T
i xj, subject to, αi ≥ 0, i = 1, . . . , n. (3.2)

The above problem is usually called the dual problem. An interesting feature of the SVM
solution is that its solution requires estimating n, rather than D, coefficients and that vector
of coefficients can be sparse, that is some of its entries can be zero. The input points for
which the corresponding coefficients are non zero are called support vectors.
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3.7 Dealing with an Offset

When considering linear models, especially in relatively low dimensional spaces, it is inter-
esting to consider an offset, that is fw,b(x) = wTx + b. We shall ask the question of how to
estimate b from data. A simple idea is to simply augment the dimension of the input space,
considering x̃ = (x, 1) and w̃ = (w, b). While this is fine if we do not regularize, if we do
then we still tend to prefer linear functions passing through the origin, since the regularizer
becomes

‖w̃‖2 = ‖w‖2 + b2.

In general we might not have reasons to believe that the model should pass through the
origin, hence we would like to consider fw,b and still regularize considering only ‖w‖2, so
that the offset is not penalized. Note that the regularized problem becomes

min
(w,b)∈RD+1

1

n

n∑
i=1

`(yi, fw,b(xi)) + λ‖w‖2.

The solution of the above problem is particularly simple when considering least squares.
Indeed, in this case it can be easily proved that a solution w∗, b∗ of the above problem is
given by

b∗ = ȳ − x̄Tw∗

where ȳ = 1
n

∑n
i=1 yi, x̄ = 1

n

∑n
i=1 xi and w∗ solves

min
w∈RD+1

1

n

n∑
i=1

`(yci , fw(xci)) + λ‖w‖2.

where yci = y − ȳ and xci = x− x̄ for all i = 1, . . . , n.
For the SVM algorithm the effect of considering an offset term is also simple, since we

simply have to add the constraint
n∑
i=1

yiαixi = 0

to the dual problems (3.2).
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