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Lecture 5- Dimensonality Reduction & PCA
Lecturer: F.Odone–L. Rosasco

In many practical applications it is of interest to reduce the dimensionality of the data.
In particular, this is useful for data visualization, or for investigating the ”effective” dimen-
sionality of the data. This problem is often referred to as dimensionality reduction and can
be seen as the problem of defining a map

M : X = RD → Rk, k � D,

according to some suitable criterion.

5.1 PCA & Reconstruction

PCA is arguably the most popular dimensionality reduction procedure. It is a data driven
procedure that given an (unsupervised) sample S = (x1, . . . , xn) derive a dimensionality
reduction defined by a linear map M . PCA can be derived from several prospective and here
we give a geometric/analytical derivation.

We begin by considering the case where k = 1. We are interested into finding the single
most relevant dimension according to some suitable criterion. Recall that, if w ∈ RD with
‖w‖ = 1, then the (orthogonal) projection of a point x on w is given by (wTx)w. Consider
the problem of finding the direction p which allows the best possible average reconstruction
of the training set, that is the solution of the problem

min
w∈SD−1

1

n

n∑
i=1

‖xi − (wTxi)w‖2, (5.1)

where SD−1 = {w ∈ RD | ‖w‖ = 1} is the sphere in D dimensions. The norm ‖xi−(wTxi)w‖2
measures how much we lose by projecting x along the direction w, and the solution p to
problem (5.1) is called the first principal component of the data. A direct computation
shows that ‖xi − (wTxi)w‖2 = ‖xi‖ − (wTxi)

2, so that problem (5.1) is equivalent to

max
w∈SD−1

1

n

n∑
i=1

(wTxi)
2. (5.2)

This latter observation is useful for two different reasons that the we discuss in the following.

5.2 PCA and Maximum Variance

If the data are centered, that is x̄ = 1
n
xi = 0, problem (5.2) has the following interpretation:

we a look for the direction along which the data have (on average) maximum variance.
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Indeed, we can interpret the term (wTx)2 has the variance of x in the direction w. If the
data are not centered, to keep this interpretation we should replace problem (5.2) with

max
w∈SD−1

1

n

n∑
i=1

(wT (xi − x̄))2, (5.3)

which corresponds to the original problem on the centered data xc = x− x̄. In the terms of
problem (5.1) it is easy to see that this corresponds to considering

min
w,b∈SD−1

1

n

n∑
i=1

‖xi − ((wT (xi − b))w + b)‖2. (5.4)

where ((wT (xi− b))w+ b is an affine transformation (rather than an orthogonal projection).

5.3 PCA and Associated Eigenproblem

A simple further manipulation allows to write problem (5.2) as an eigenvalue problem. In-
deed, using the symmetry of the inner product we have

1

n

n∑
i=1

(wTxi)
2 =

1

n

n∑
i=1

wTxiw
Txi =

1

n

n∑
i=1

wTxix
T
i w = wT (

1

n

n∑
i=1

xix
T
i )w

so that problem (5.2) can be written as

max
w∈SD−1

wTCnw, Cn =
1

n

n∑
i=1

xix
T
i . (5.5)

We need two observations. First, in matrix notation Cn = 1
n

∑n
i=1X

T
nXn and it is easy to

see that Cn is symmetric and positive semi-definite. If the data are centered the matrix Cn

is the so called covariance matrix. Clearly the objective function in (5.5) can be written as

wTCnw

wTw

where the latter quantity is the so called Rayleigh quotient. Note that, if Cnu = λu then
uTCnu
uTu

= λ, since the eigenvector u normalized. In fact, it is possible to show that the
Rayleigh quotient achieves its maximum at a vector which corresponds to the maximum
eigenvalue of Cn (the proof of this latter fact uses basic results in linear programming).
Then computing the first principal component of the data reduced to computing the biggest
eigenvalue of the covariance and the corresponding eigenvector.

5.4 Beyond the First Principal Component

Next, we discuss how the above reasoning can be generalized to k > 1, that is more than
one principle component. The idea is simply to iterate the above reasoning to describe the
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input data beyond what is allowed by the first principal component. Towards this end, we
consider the one dimensional projection which can best reconstruct the residuals

ri = xi − (pTxi)pi,

that is we replace problem (5.1) by

min
w∈SD−1,w⊥p

1

n

n∑
i=1

‖ri − (wT ri)w‖2. (5.6)

Note that for all i = 1, . . . , n,

‖ri − (wT ri)w‖2 = ‖ri‖2 − (wT ri)
2 = ‖ri‖2 − (wTx)2

since w ⊥ p. Then, following the reasoning from (5.1) to (5.2), problem (5.6) can equivalently
be written as

max
w∈SD−1,w⊥p

1

n

n∑
i=1

(wTxi)
2 = wTCnw. (5.7)

Again, we have to minimize the Rayleigh quotient of the covariance matrix, however, when
compared to (5.2), we see that there is the new constraint w ⊥ p. Indeed, it can be proven
that the solution of problem (5.7) is given by the second eigenvector of Cn, and the corre-
sponding eigenvalue. The proof of this latter fact follows the same line of the one for the
first principal component. Clearly, the above reasoning can be generalized to consider more
than two components. The computation of the principal components reduces to the problem
of finding the eigenvalues and eigenvectors of Cn. The complexity of this problem is roughly
O(kD2) (note that the complexity of forming Cn is O(nD2)).

The principal components can be stacked as columns of a k by D matrix M , and in
fact, because of the orthogonality constraint, the matrix M is orthogonal, MMT = I. The
dimensionality reduction induced by PCA is hence linear.

5.5 Singular Value Decomposition

We recall the notion of singular valued decomposition of a matrix which allows in some
situations to improve the computations of the principal components, while suggesting a
possible way to generalize the algorithm to consider non linear dimensionality reduction.

Consider the data matrix Xn, its singular value decomposition is given by

Xn = UΣP T .

where U is a n by d orthogonal matrix, P is a D by d orthogonal matrix, Σ is a diagonal
matrix such that Σi,i =

√
λi, i = 1, . . . , d and d ≤ min{n,D}. The columns of U and the

columns of V are called respectively the left and right singular vectors and the diagonal
entries of Σ the singular values. The singular value decomposition can be equivalently
described by the following equations, for j = 1, . . . , d,

Cnpj = λjpj,
1

n
Knuj = λjuj,

Xnpj =
√
λjuj,

1

n
XT

n uj =
√
λjpj, (5.8)
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where Cn = 1
n
XT

nXn and 1
n
Kn = 1

n
XnX

T
n .

If n � p the above equations can be used to speed up the computation of the principal
components. Indeed we can consider the following procedure:

• form the matrix Kn, which is O(Dn2),

• find the first k eigenvectors of Kn, which is O(kn2),

• find the principal components using (5.8), i.e.

pj =
1√
λj
XT

n uj =
1√
λj

n∑
i=1

xiu
i
j, j = 1, . . . , d (5.9)

where u = (u1, . . . , un), which is again O(knd) if we consider k principal components.

5.6 Kernel PCA

The latter reasoning suggests how to generalize the intuition behind PCA beyond linear
dimensionality reduction by using kernels (or feature maps). Indeed, from equation (5.9) we
can see that the projection of a point x on a principal component p can be written as

(M(x))j = xTpj =
1√
λj
xTXT

n uj =
1√
λj

n∑
i=1

xTxiu
i
j, (5.10)

for j = 1, . . . , d.
What if we were to map the data using a possibly non linear feature map Φ : X → F ,

before performing PCA? If the feature map is finite dimensional, e.g. F = Rp we could
simply replace x 7→ Φ(x) and follow exactly reasoning in the previous sections. Note that in
particular that equation (5.10) becomes

(M(x))j = Φ(x)Tpj =
1√
λj

n∑
i=1

Φ(x)TΦ(xi)u
i
j, (5.11)

for j = 1, . . . , d. More generally one could consider a positive definite kernel K : X×X → R,
in which case (5.10) becomes

(M(x))j =
1√
λj

n∑
i=1

K(x, xi)u
i
j, (5.12)

for j = 1, . . . , d. Note that in this latter case, while it is not clear how to form Cn, we can
still form and diagonalize Kn, which is in fact the kernel matrix.
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