
MLCC: Machine Learning Crash Course Spring 2014

Lecture 6- Variable Selection & Sparsity
Lecturer: F.Odone–L. Rosasco

In many practical situations beyond predictions it is important to obtain interpretable
results. Interpretability is often determined by detecting which factors have determined our
prediction. We look at this question from the perspective of variable selection.

Consider a linear model

fw(x) = wTx =
v∑
i=1

wjxj. (6.1)

Here we can think of the components xjof an input of specific measurements: pixel values
in the case of images, dictionary words counting in the case of texts, etc. Given a training
set the goal of variable selection is to detect which variables are important for prediction.
The key assumption is that the best possible prediction rule is sparse, that is only few of the
coefficients in (6.1) are different from zero.

6.1 Subset Selection

A brute force approach would be to consider all the training sets obtained considering all the
possible subset of variables. More precisely we could begin by considering only the training
set where we retain only the first variable of each input points. Then the one where we
retain only the second, and so on and so forth. Next, we could pass to consider training set
with pairs of variables, then triplet etc. For each training set one would solve the learning
problem and eventually end selecting the variables for which the corresponding training set
achieve the best performance.

The approach described has an exponential complexity and becomes unfeasible already
for relatively small D. If we consider the square loss, it can be shown that the corresponding
problem could be written as

min
w∈RD

1

n

n∑
i=1

`(yi, fw(xi)) + λ‖w‖0, (6.2)

where ‖w‖0 = |{j | wj 6= 0}| is called the `0 norm and counts the number of non zero
components in w. In the following we focus on the least squares loss and consider different
approaches to find approximate solution to the above problem, namely greedy methods and
convex relaxation.

6.2 Greedy Methods: (Orthogonal) Matching Pursuit

Greedy approaches are often considered to find approximate solution to problem (6.2) This
class of approaches to variable selection generally encompasses the following steps:
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1. initialize the residual, the coefficient vector, and the index set,

2. find the variable most correlated with the residual,

3. update the index set to include the index of such variable,

4. update/compute coefficient vector,

5. update residual.

The simplest such procedure is called forward stage-wise regression in statistics and matching
pursuit (MP) in signal processing. To describe the procedure we need some notation. Let
Xn be the n by D data matrix and Xj ∈ Rn, j = 1, . . . , D be the columns of Xn. Let
Yn ∈ Rn be the output vector. Let r, w, I denote the residual, the coefficient vector, an index
set, respectively.

The MP algorithm starts by initializing the residual r ∈ Rn, the coefficient vector w ∈ RD,
and the index set I ⊆ {1, . . . , D},

r0 = Yn, , w0 = 0, I0 = ∅.

The following procedure is then iterated for i = 1, . . . , T − 1. The variable most correlated
with the residual is given by

k = arg max
j=1,...,D

aj, aj =
(rTi−1X

j)2

‖Xj‖2
,

where we note that

vj =
rTi−1X

j

‖Xj‖2
= arg min

v∈R
‖ri−1 −Xjv‖2, ‖ri−1 −Xjvj‖2 = ‖ri−1‖2 − aj

The selection rule has then two interpretations. We select the variable, such that the pro-
jection on the output on the corresponding column is larger, or, equivalently, we select the
variable such that the corresponding column best explains the the output vector in a least
squares sense.

Then, index set is updated as Ii = Ii−1 ∪ {k}, and the coefficients vector is given by

wi = wi−1 + wk, wkk = vkek (6.3)

where ek is the element of the canonical basis in RDwith k-th component different from zero.
Finally, the residual is updated

ri = ri−1 −Xwk.
A variant of the above procedure, called Orthogonal Matching Pursuit, is also often consid-
ered. The corresponding iteration is analogous to that of MP but the coefficient computa-
tion (6.3) is replaced by

wi = arg min
w∈RD

‖Yn −XnMIiw‖2,

where the D by D matrix MI is such that (MIw)j = wj if j ∈ I and (MIw)j = 0 otherwise.
Moreover, the residual update is replaced by

ri = Yn −Xnwi.
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6.3 Convex Relaxation: LASSO & Elastic Net

Another popular approach to find an approximate solution to problem (6.2) is based on a
convex relaxation. Namely, the `0 norm is replaced by the `1 norm,

‖w‖1 =
D∑
j=1

|wj|,

so that, in the case of least squares, problem (6.2) is replaced by

min
w∈RD

1

n

n∑
i=1

(yi − fw(xi))
2 + λ‖w‖1. (6.4)

The above problem is called LASSO in statistics and Basis Pursuit in signal processing. In
The objective function defining the corresponding minimization problem is convex but not
differentiable. Tools from non-smooth convex optimization are needed to find a solution. A
simple yet powerful procedure to compute a solution is based on the so called iterative soft
thresholding algorithm (ISTA). The latter is an iterative procedure where, at each iteration,
a non linear soft thresholding operator is applied to a gradient step. More precisely, ISTA
is defined by the following iteration

w0 = 0, wi = Sλγ(wi−1 −
2γ

n
XT
n (Yn −Xnwi−1)), i = 1, . . . , Tmax

which should be run until a convergence criterion is met, e.g. ‖wi − wi−1‖ ≤ ε, for some
precision ε, or a prescribed maximum number of iteration Tmax is reached. To ensure con-
vergence we should choose the step-size γ = n

2‖XT
nXn‖ Note that the argument of the soft

thresholding operator corresponds to a step of gradient descent. Indeed,

2

n
XT
n (Yn −Xnwi−1)

The soft thresholding operator acts component wise on a vector w, so that

Sα(u) = ||u| − α|+
u

|u|
.

The above expression shows that the coefficients of the solution of problem (6.2) as computed
by ISTA can be exactly zero, This can be contrasted with Tikhonov regularization where
this is hardly the case.

Indeed, it is possible to see that, on the one hand, while Tikhonov allows to compute
a stable solution, in general its solution is not sparse. On the other hand the solution of
LASSO, might not be stable. The elastic net algorithm, defined as

min
w∈RD

1

n

n∑
i=1

(yi − fw(xi))
2 + λ(α‖w‖1 + (1− α)‖w‖22), α ∈ [0, 1], (6.5)
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can be seen as hybrid algorithm which interpolated between Tikhonov and LASSO. The
ISTA procedure can be adapted to solve the elastic net problem, where the gradient descent
step incorporates also the derivative of the `2 penalty term. The resulting algorithm is

w0 = 0, wi = Sλαγ((1− λγ(1− α))wi−1 −
2γ

n
XT
n (Yn −Xnwi−1)), i = 1, . . . , Tmax

To ensure convergence we should choose the step-size γ = n
2(‖XT

nXn‖+λ(1−α))
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