From Bandits to Experts:
A Tale of Domination and Independence

Nicolò Cesa-Bianchi

Università degli Studi di Milano
From Bandits to Experts:
A Tale of Domination and Independence

Nicolò Cesa-Bianchi

Università degli Studi di Milano

Joint work with:
Noga Alon
Ofer Dekel
Tomer Koren
Theory of repeated games

James Hannan
(1922–2010)

David Blackwell
(1919–2010)

Learning to play a game (1956)
Play a game repeatedly against a possibly suboptimal opponent
Zero-sum 2-person games played more than once

\[\begin{array}{cccc}
1 & 2 & \ldots & M \\
1 & \ell(1, 1) & \ell(1, 2) & \ldots \\
2 & \ell(2, 1) & \ell(2, 2) & \ldots \\
\vdots & \vdots & \vdots & \ddots \\
N & \end{array} \]

N \times M known loss matrix over \(\mathbb{R} \)
- Row player (player)
 - has \(N \) actions
- Column player (opponent)
 - has \(M \) actions

For each game round \(t = 1, 2, \ldots \)
- Player chooses action \(i_t \) and opponent chooses action \(y_t \)
- The player suffers loss \(\ell(i_t, y_t) \) (= gain of opponent)

Player can learn from opponent’s history of past choices \(y_1, \ldots, y_{t-1} \)
Prediction with expert advice

Volodya Vovk

Manfred Warmuth

Play an unknown loss matrix

Opponent’s moves y_1, y_2, \ldots define a sequential prediction problem with a time-varying loss function $l(i_t, y_t) = l_t(i_t)$
Playing the experts game

For $t = 1, 2, \ldots$

1. Loss $\ell_t(i) \in [0, 1]$ is assigned to every action $i = 1, \ldots, N$ (hidden from the player)
For $t = 1, 2, \ldots$

1. Loss $\ell_t(i) \in [0, 1]$ is assigned to every action $i = 1, \ldots, N$ (hidden from the player)

2. Player picks an action I_t (possibly using randomization) and incurs loss $\ell_t(I_t)$
Playing the experts game

For \(t = 1, 2, \ldots \)

1. Loss \(\ell_t(i) \in [0, 1] \) is assigned to every action \(i = 1, \ldots, N \) (hidden from the player)
2. Player picks an action \(I_t \) (possibly using randomization) and incurs loss \(\ell_t(I_t) \)
3. Player gets feedback information: \(\ell_t = (\ell_t(1), \ldots, \ell_t(N)) \)
Oblivious opponents

The loss process \(\langle \ell_t \rangle_{t \geq 1} \) is deterministic and unknown to the (randomized) player \(I_1, I_2, \ldots \)

Oblivious regret minimization

\[
R_T \overset{\text{def}}{=} \mathbb{E} \left[\sum_{t=1}^{T} \ell_t(I_t) \right] - \min_{i=1,\ldots,N} \sum_{t=1}^{T} \ell_t(i) \overset{\text{want}}{=} o(T)
\]
Lower bound using random losses

- Losses $\ell_t(i)$ are independent random coin flips $L_t(i) \in \{0, 1\}$
- For any player strategy $\mathbb{E} \left[\sum_{t=1}^{T} L_t(I_t) \right] = \frac{T}{2}$
- Then the expected regret is

$$\mathbb{E} \left[\max_{i=1,\ldots,N} \sum_{t=1}^{T} \left(\frac{1}{2} - L_t(i) \right) \right] = (1 - o(1)) \sqrt{\frac{T \ln N}{2}}$$
Exponentially weighted forecaster

At time t pick action $I_t = i$ with probability proportional to

$$
\exp \left(-\eta \sum_{s=1}^{t-1} \ell_s(i) \right)
$$

the sum at the exponent is the total loss of action i up to now

Regret bound

[How to use expert advice, 1997]

- If $\eta = \sqrt{\ln N / (8T)}$ then $R_T \leq \sqrt{T \ln N / 2}$
- Matching lower bound including constants
- Dynamic choice $\eta_t = \sqrt{\ln N / (8t)}$ only loses small constants
The bandit problem: playing an unknown game

N actions

For $t = 1, 2, \ldots$

1. Loss $\ell_t(i) \in [0, 1]$ is assigned to every action $i = 1, \ldots, N$ (hidden from the player)
The bandit problem: playing an unknown game

\(N \) actions

For \(t = 1, 2, \ldots \)

1. Loss \(\ell_t(i) \in [0, 1] \) is assigned to every action \(i = 1, \ldots, N \) (hidden from the player)

2. Player picks an action \(I_t \) (possibly using randomization) and incurs loss \(\ell_t(I_t) \)
The bandit problem: playing an unknown game

N actions

For $t = 1, 2, \ldots$

1. Loss $\ell_t(i) \in [0, 1]$ is assigned to every action $i = 1, \ldots, N$ (hidden from the player)

2. Player picks an action I_t (possibly using randomization) and incurs loss $\ell_t(I_t)$

3. Player gets feedback information: Only $\ell_t(I_t)$ is revealed
The bandit problem: playing an unknown game

For $t = 1, 2, \ldots$

1. Loss $\ell_t(i) \in [0, 1]$ is assigned to every action $i = 1, \ldots, N$ (hidden from the player).
2. Player picks an action I_t (possibly using randomization) and incurs loss $\ell_t(I_t)$.
3. Player gets feedback information: Only $\ell_t(I_t)$ is revealed.

Many applications

Ad placement, dynamic content adaptation, routing, online auctions
Relationships between actions

[Mannor and Shamir, 2011]
A graph of relationships over actions
A graph of relationships over actions
A graph of relationships over actions
Recovering expert and bandit settings

Experts: clique

Bandits: empty graph

N. Cesa-Bianchi (UNIMI) Domination and Independence 12/1
Exponentially weighted forecaster — Reprise

Player’s strategy [Alon, C-B, Gentile, Mannor, Mansour and Shamir, 2013]

1. \(P_t(I_t = i) \propto \exp \left(-\eta \sum_{s=1}^{t-1} \hat{\ell}_s(i) \right) \quad i = 1, \ldots, N \)

2. \(\hat{\ell}_t(i) = \begin{cases}
\frac{\ell_t(i)}{P_t(\ell_t(i) \text{ observed})} & \text{if } \ell_t(i) \text{ is observed} \\
0 & \text{otherwise}
\end{cases} \)

Importance sampling estimator

\[
\begin{align*}
\mathbb{E}_t \left[\hat{\ell}_t(i) \right] &= \ell_t(i) \quad \text{unbiasedness} \\
\mathbb{E}_t \left[\hat{\ell}_t(i)^2 \right] &\leq \frac{1}{P_t(\ell_t(i) \text{ observed})} \quad \text{variance control}
\end{align*}
\]
Regret bounds

Analysis (undirected graphs)

\[R_T \leq \frac{\ln N}{\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \sum_{i=1}^{N} \frac{P_t(I_t = i)}{P_t(I_t = i)} + \sum_{j \in N_G(i)} P_t(I_t = j) \]

Lemma

For any undirected graph \(G = (V, E) \) and for any probability assignment \(p_1, \ldots, p_N \) over its vertices

\[\sum_{i=1}^{N} \frac{p_i}{p_i + \sum_{j \in N_G(i)} p_j} \leq \alpha(G) \]

\(\alpha(G) \) is the independence number of \(G \) (largest subset of \(V \) such that no two distinct vertices in it are adjacent in \(G \))
Regret bounds

Analysis (undirected graphs)

\[R_T \leq \frac{\ln N}{\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \alpha(G) = \sqrt{T \alpha(G) \ln N} \]

by choosing \(\eta \)

Special cases

Experts (clique): \(\alpha(G) = 1 \) \(R_T \leq \sqrt{T \ln N} \)

Bandits (empty graph): \(\alpha(G) = N \) \(R_T \leq \sqrt{TN \ln N} \)

Minimax rate

The general bound is tight: \(R_T = \Theta(\sqrt{T \alpha(G) \ln N}) \)
More general feedback models

Directed

Interventions
Old and new examples

Experts

Bandits

Cops & Robbers

Revealing Action
Exponentially weighted forecaster with exploration

Player’s strategy

\[P_t(I_t = i) \propto \frac{1 - \gamma}{Z_t} \exp \left(-\eta \sum_{s=1}^{t-1} \hat{\ell}_s(i) \right) + \gamma U_G \quad i = 1, \ldots, N \]

\[\hat{\ell}_t(i) = \begin{cases} \\
\frac{\ell_t(i)}{P_t(\ell_t(i) \text{ observed})} & \text{if } \ell_t(i) \text{ is observed} \\
0 & \text{otherwise} \\
\end{cases} \]

\(U_G \) is uniform distribution supported on a subset of \(V \)

[Alon, C-B, Dekel and Koren, 2015]
A vertex of G is:

- **observable** if it has at least one incoming edge (possibly a self-loop)
- **strongly observable** if it has either a self-loop or incoming edges from all other vertices
- **weakly observable** if it is observable but not strongly observable

- 3 is not observable
- 2 and 5 are weakly observable
- 1 and 4 are strongly observable
Minimax rates

<table>
<thead>
<tr>
<th>Condition</th>
<th>Rate Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>G is strongly observable</td>
<td>$R_T = \tilde{\Theta}\left(\sqrt{\alpha(G)T}\right)$</td>
</tr>
<tr>
<td>U_G is uniform on V</td>
<td></td>
</tr>
<tr>
<td>G is weakly observable</td>
<td>$R_T = \tilde{\Theta}\left(T^{2/3}\delta(G)\right)$</td>
</tr>
<tr>
<td>U_G is uniform on a weakly dominating set</td>
<td></td>
</tr>
<tr>
<td>G is not observable</td>
<td>$R_T = \Theta(T)$</td>
</tr>
</tbody>
</table>

Weakly dominating set

$\delta(G)$ is the size of the smallest set that dominates all weakly observable nodes of G.

Diagram:

```
1
   / \  \\
  5   2 \\
     / \\
    4   3
```
Minimax regret

Presence of red loops does not affect minimax regret
\[R_T = \Theta(\sqrt{T \ln N}) \]

With red loop: strongly observable with \(\alpha(G) = N - 1 \)
\[R_T = \tilde{\Theta}\left(\sqrt{NT}\right) \]

Without red loop: weakly observable with \(\delta(G) = 1 \)
\[R_T = \tilde{\Theta}\left(T^{2/3}\right) \]
Reactive opponents

The loss of action i at time t depends on the player’s past m actions

$$\ell_t(i) \rightarrow L_t(I_{t-m}, \ldots, I_{t-1}, i)$$

Adaptive regret

$$R^{\text{ada}}_T = \mathbb{E} \left[\sum_{t=1}^{T} L_t(I_{t-m}, \ldots, I_{t-1}, I_t) - \min_{i=1, \ldots, N} \sum_{t=1}^{T} L_t(i, \ldots, i, i) \right]$$

Minimax rate ($m > 0$)

$$R^{\text{ada}}_T = \Theta \left(T^{2/3} \right)$$
Conclusions

- An abstract, game-theoretic framework for studying a variety of sequential decisions problems
- Applicable to machine learning (e.g., binary classification) and online convex optimization settings
- Exponential weights can be replaced by polynomial weights (cfr. Mirror Descent for convex optimization)
- Connections to gambling, portfolio management, competitive analysis of algorithms