MLCC 2015
 Dimensionality Reduction and PCA

Lorenzo Rosasco
UNIGE-MIT-IIT

June 25, 2015

Outline

PCA \& Reconstruction

PCA and Maximum Variance

PCA and Associated Eigenproblem

Beyond the First Principal Component

PCA and Singular Value Decomposition

Kernel PCA

Dimensionality Reduction

In many practical applications it is of interest to reduce the dimensionality of the data:

- data visualization
- data exploration: for investigating the "effective" dimensionality of the data

Dimensionality Reduction (cont.)

This problem of dimensionality reduction can be seen as the problem of defining a map

$$
M: X=\mathbb{R}^{D} \rightarrow \mathbb{R}^{k}, \quad k \ll D
$$

according to some suitable criterion.

Dimensionality Reduction (cont.)

This problem of dimensionality reduction can be seen as the problem of defining a map

$$
M: X=\mathbb{R}^{D} \rightarrow \mathbb{R}^{k}, \quad k \ll D
$$

according to some suitable criterion.
In the following data reconstruction will be our guiding principle.

Principal Component Analysis

PCA is arguably the most popular dimensionality reduction procedure.

Principal Component Analysis

PCA is arguably the most popular dimensionality reduction procedure.

It is a data driven procedure that given an unsupervised sample

$$
S=\left(x_{1}, \ldots, x_{n}\right)
$$

derive a dimensionality reduction defined by a linear map M.

Principal Component Analysis

PCA is arguably the most popular dimensionality reduction procedure.

It is a data driven procedure that given an unsupervised sample

$$
S=\left(x_{1}, \ldots, x_{n}\right)
$$

derive a dimensionality reduction defined by a linear map M.
PCA can be derived from several prospective and here we give a geometric derivation.

Dimensionality Reduction by Reconstruction

Recall that, if

$$
w \in \mathbb{R}^{D}, \quad\|w\|=1
$$

then $\left(w^{T} x\right) w$ is the orthogonal projection of x on w

Dimensionality Reduction by Reconstruction

Recall that, if

$$
w \in \mathbb{R}^{D}, \quad\|w\|=1
$$

then $\left(w^{T} x\right) w$ is the orthogonal projection of x on w

Dimensionality Reduction by Reconstruction (cont.)

First, consider $k=1$. The associated reconstruction error is

$$
\left\|x-\left(w^{T} x\right) w\right\|^{2}
$$

(that is how much we lose by projecting x along the direction w)

Dimensionality Reduction by Reconstruction (cont.)

First, consider $k=1$. The associated reconstruction error is

$$
\left\|x-\left(w^{T} x\right) w\right\|^{2}
$$

(that is how much we lose by projecting x along the direction w)

Problem:
Find the direction p allowing the best reconstruction of the training set

Dimensionality Reduction by Reconstruction (cont.)

Let $\mathbb{S}^{D-1}=\left\{w \in \mathbb{R}^{D} \mid\|w\|=1\right\}$ is the sphere in D dimensions. Consider the empirical reconstruction minimization problem,

$$
\min _{w \in \mathbb{S}^{D-1}} \frac{1}{n} \sum_{i=1}^{n}\left\|x_{i}-\left(w^{T} x_{i}\right) w\right\|^{2}
$$

The solution p to the above problem is called the first principal component of the data

An Equivalent Formulation

A direct computation shows that $\left\|x_{i}-\left(w^{T} x_{i}\right) w\right\|^{2}=\left\|x_{i}\right\|-\left(w^{T} x_{i}\right)^{2}$

An Equivalent Formulation

A direct computation shows that $\left\|x_{i}-\left(w^{T} x_{i}\right) w\right\|^{2}=\left\|x_{i}\right\|-\left(w^{T} x_{i}\right)^{2}$

Then, problem

$$
\min _{w \in \mathbb{S}^{D-1}} \frac{1}{n} \sum_{i=1}^{n}\left\|x_{i}-\left(w^{T} x_{i}\right) w\right\|^{2}
$$

is equivalent to

$$
\max _{w \in \mathbb{S}^{D-1}} \frac{1}{n} \sum_{i=1}^{n}\left(w^{T} x_{i}\right)^{2}
$$

Outline

PCA \& Reconstruction

PCA and Maximum Variance

PCA and Associated Eigenproblem

Beyond the First Principal Component

PCA and Singular Value Decomposition

Kernel PCA

Reconstruction and Variance

Assume the data to be centered, $\bar{x}=\frac{1}{n} x_{i}=0$, then we can interpret the term

$$
\left(w^{T} x\right)^{2}
$$

as the variance of x in the direction w.

Reconstruction and Variance

Assume the data to be centered, $\bar{x}=\frac{1}{n} x_{i}=0$, then we can interpret the term

$$
\left(w^{T} x\right)^{2}
$$

as the variance of x in the direction w.

The first PC can be seen as the direction along which the data have maximum variance.

$$
\max _{w \in \mathbb{S}^{D-1}} \frac{1}{n} \sum_{i=1}^{n}\left(w^{T} x_{i}\right)^{2}
$$

Centering

If the data are not centered, we should consider

$$
\begin{equation*}
\max _{w \in \mathbb{S}^{D-1}} \frac{1}{n} \sum_{i=1}^{n}\left(w^{T}\left(x_{i}-\bar{x}\right)\right)^{2} \tag{1}
\end{equation*}
$$

equivalent to

$$
\max _{w \in \mathbb{S}^{D-1}} \frac{1}{n} \sum_{i=1}^{n}\left(w^{T} x_{i}^{c}\right)^{2}
$$

with $x^{c}=x-\bar{x}$.

Centering and Reconstruction

If we consider the effect of centering to reconstruction it is easy to see that we get

$$
\min _{w, b \in \mathbb{S}^{D-1}} \frac{1}{n} \sum_{i=1}^{n}\left\|x_{i}-\left(\left(w^{T}\left(x_{i}-b\right)\right) w+b\right)\right\|^{2}
$$

where

$$
\left(\left(w^{T}\left(x_{i}-b\right)\right) w+b\right.
$$

is an affine (rather than an orthogonal) projection

Outline

PCA \& Reconstruction

PCA and Maximum Variance

PCA and Associated Eigenproblem

Beyond the First Principal Component

PCA and Singular Value Decomposition

Kernel PCA

PCA as an Eigenproblem

A further manipulation shows that PCA corresponds to an eigenvalue problem.

PCA as an Eigenproblem

A further manipulation shows that PCA corresponds to an eigenvalue problem.

Using the symmetry of the inner product,
$\frac{1}{n} \sum_{i=1}^{n}\left(w^{T} x_{i}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n} w^{T} x_{i} w^{T} x_{i}=\frac{1}{n} \sum_{i=1}^{n} w^{T} x_{i} x_{i}^{T} w=w^{T}\left(\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{T}\right) w$

PCA as an Eigenproblem

A further manipulation shows that PCA corresponds to an eigenvalue problem.

Using the symmetry of the inner product,
$\frac{1}{n} \sum_{i=1}^{n}\left(w^{T} x_{i}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n} w^{T} x_{i} w^{T} x_{i}=\frac{1}{n} \sum_{i=1}^{n} w^{T} x_{i} x_{i}^{T} w=w^{T}\left(\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{T}\right) w$

Then, we can consider the problem

$$
\max _{w \in \mathbb{S}^{D-1}} w^{T} C_{n} w, \quad C_{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{T}
$$

PCA as an Eigenproblem (cont.)

We make two observations:

- The ("covariance") matrix $C_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{n}^{T} X_{n}$ is symmetric and positive semi-definite.

PCA as an Eigenproblem (cont.)

We make two observations:

- The ("covariance") matrix $C_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{n}^{T} X_{n}$ is symmetric and positive semi-definite.
- The objective function of PCA can be written as

$$
\frac{w^{T} C_{n} w}{w^{T} w}
$$

the so called Rayleigh quotient.

PCA as an Eigenproblem (cont.)

We make two observations:

- The ("covariance") matrix $C_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{n}^{T} X_{n}$ is symmetric and positive semi-definite.
- The objective function of PCA can be written as

$$
\frac{w^{T} C_{n} w}{w^{T} w}
$$

the so called Rayleigh quotient.

Note that, if $C_{n} u=\lambda u$ then $\frac{u^{T} C_{n} u}{u^{T} u}=\lambda$, since u is normalized.

PCA as an Eigenproblem (cont.)

We make two observations:

- The ("covariance") matrix $C_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{n}^{T} X_{n}$ is symmetric and positive semi-definite.
- The objective function of PCA can be written as

$$
\frac{w^{T} C_{n} w}{w^{T} w}
$$

the so called Rayleigh quotient.

Note that, if $C_{n} u=\lambda u$ then $\frac{u^{T} C_{n} u}{u^{T} u}=\lambda$, since u is normalized.

Indeed, it is possible to show that the Rayleigh quotient achieves its maximum at a vector corresponding to the maximum eigenvalue of C_{n}

PCA as an Eigenproblem (cont.)

Computing the first principal component of the data reduces to computing the biggest eigenvalue of the covariance and the corresponding eigenvector.

$$
C_{n} u=\lambda u, \quad C_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{n}^{T} X_{n}
$$

Outline

PCA \& Reconstruction

PCA and Maximum Variance

PCA and Associated Eigenproblem

Beyond the First Principal Component

PCA and Singular Value Decomposition

Kernel PCA

Beyond the First Principal Component

We discuss how to consider more than one principle component ($k>1$)

$$
M: X=\mathbb{R}^{D} \rightarrow \mathbb{R}^{k}, \quad k \ll D
$$

The idea is simply to iterate the previous reasoning

Residual Reconstruction

The idea is to consider the one dimensional projection that can best reconstruct the residuals

$$
r_{i}=x_{i}-\left(p^{T} x_{i}\right) p_{i}
$$

Residual Reconstruction

The idea is to consider the one dimensional projection that can best reconstruct the residuals

$$
r_{i}=x_{i}-\left(p^{T} x_{i}\right) p_{i}
$$

An associated minimization problem is given by

$$
\min _{w \in \mathbb{S}^{D-1}, w \perp p} \frac{1}{n} \sum_{i=1}^{n}\left\|r_{i}-\left(w^{T} r_{i}\right) w\right\|^{2}
$$

(note: the constraint $w \perp p$)

Residual Reconstruction (cont.)

Note that for all $i=1, \ldots, n$,

$$
\left\|r_{i}-\left(w^{T} r_{i}\right) w\right\|^{2}=\left\|r_{i}\right\|^{2}-\left(w^{T} r_{i}\right)^{2}=\left\|r_{i}\right\|^{2}-\left(w^{T} x_{i}\right)^{2}
$$

since $w \perp p$

Residual Reconstruction (cont.)

Note that for all $i=1, \ldots, n$,

$$
\left\|r_{i}-\left(w^{T} r_{i}\right) w\right\|^{2}=\left\|r_{i}\right\|^{2}-\left(w^{T} r_{i}\right)^{2}=\left\|r_{i}\right\|^{2}-\left(w^{T} x_{i}\right)^{2}
$$

since $w \perp p$

Then, we can consider the following equivalent problem

$$
\max _{w \in \mathbb{S}^{D-1}, w \perp p} \frac{1}{n} \sum_{i=1}^{n}\left(w^{T} x_{i}\right)^{2}=w^{T} C_{n} w .
$$

PCA as an Eigenproblem

$$
\max _{w \in \mathbb{S}^{D-1}, w \perp p} \frac{1}{n} \sum_{i=1}^{n}\left(w^{T} x_{i}\right)^{2}=w^{T} C_{n} w
$$

Again, we have to minimize the Rayleigh quotient of the covariance matrix with the extra constraint $w \perp p$

PCA as an Eigenproblem

$$
\max _{w \in \mathbb{S}^{D-1}, w \perp p} \frac{1}{n} \sum_{i=1}^{n}\left(w^{T} x_{i}\right)^{2}=w^{T} C_{n} w
$$

Again, we have to minimize the Rayleigh quotient of the covariance matrix with the extra constraint $w \perp p$

Similarly to before, it can be proved that the solution of the above problem is given by the second eigenvector of C_{n}, and the corresponding eigenvalue.

PCA as an Eigenproblem (cont.)

$$
C_{n} u=\lambda u, \quad C_{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{T}
$$

The reasoning generalizes to more than two components: computation of k principal components reduces to finding k eigenvalues and eigenvectors of C_{n}.

Remarks

- Computational complexity roughly $O\left(k D^{2}\right)$ (complexity of forming C_{n} is $O\left(n D^{2}\right)$). If we have n points in D dimensions and $n \ll D$ can we compute PCA in less than $O\left(n D^{2}\right)$?

Remarks

- Computational complexity roughly $O\left(k D^{2}\right)$ (complexity of forming C_{n} is $O\left(n D^{2}\right)$). If we have n points in D dimensions and $n \ll D$ can we compute PCA in less than $O\left(n D^{2}\right)$?
- The dimensionality reduction induced by PCA is a linear projection. Can we generalize PCA to non linear dimensionality reduction?

Outline

PCA \& Reconstruction

PCA and Maximum Variance

PCA and Associated Eigenproblem

Beyond the First Principal Component

PCA and Singular Value Decomposition

Kernel PCA

Singular Value Decomposition

Consider the data matrix X_{n}, its singular value decomposition is given by

$$
X_{n}=U \Sigma V^{T}
$$

where:

- U is a n by k orthogonal matrix,
- V is a D by k orthogonal matrix,
- Σ is a diagonal matrix such that $\Sigma_{i, i}=\sqrt{\lambda_{i}}, i=1, \ldots, k$ and $k \leq \min \{n, D\}$.

The columns of U and the columns of V are the left and right singular vectors and the diagonal entries of Σ the singular values.

Singular Value Decomposition (cont.)

The SVD can be equivalently described by the equations

$$
\begin{aligned}
C_{n} p_{j} & =\lambda_{j} p_{j}, \quad \frac{1}{n} K_{n} u_{j}=\lambda_{j} u_{j}, \\
X_{n} p_{j} & =\sqrt{\lambda_{j}} u_{j}, \quad \frac{1}{n} X_{n}^{T} u_{j}=\sqrt{\lambda_{j}} p_{j},
\end{aligned}
$$

for $j=1, \ldots, d$ and where $C_{n}=\frac{1}{n} X_{n}^{T} X_{n}$ and $\frac{1}{n} K_{n}=\frac{1}{n} X_{n} X_{n}^{T}$

PCA and Singular Value Decomposition

If $n \ll p$ we can consider the following procedure:

- form the matrix K_{n}, which is $O\left(D n^{2}\right)$
- find the first k eigenvectors of K_{n}, which is $O\left(k n^{2}\right)$
- compute the principal components using

$$
p_{j}=\frac{1}{\sqrt{\lambda_{j}}} X_{n}^{T} u_{j}=\frac{1}{\sqrt{\lambda_{j}}} \sum_{i=1}^{n} x_{i} u_{j}^{i}, \quad j=1, \ldots, d
$$

where $u=\left(u^{1}, \ldots, u^{n}\right)$, This is $O(k n D)$ if we consider k principal components.

Outline

PCA \& Reconstruction

PCA and Maximum Variance

PCA and Associated Eigenproblem

Beyond the First Principal Component

PCA and Singular Value Decomposition

Kernel PCA

Beyond Linear Dimensionality Reduction?

By considering PCA we are implicitly assuming the data to lie on a linear subspace....

Beyond Linear Dimensionality Reduction?

By considering PCA we are implicitly assuming the data to lie on a linear subspace....
...it is easy to think of situations where this assumption might violated.

Beyond Linear Dimensionality Reduction?

By considering PCA we are implicitly assuming the data to lie on a linear subspace....
...it is easy to think of situations where this assumption might violated.

Can we use kernels to obtain non linear generalization of PCA?

From SVD to KPCA

Using SVD the projection of a point x on a principal component p_{j}, for $j=1, \ldots, d$, is

$$
(M(x))^{j}=x^{T} p_{j}=\frac{1}{\sqrt{\lambda_{j}}} x^{T} X_{n}^{T} u_{j}=\frac{1}{\sqrt{\lambda_{j}}} \sum_{i=1}^{n} x^{T} x_{i} u_{j}^{i},
$$

Recall

$$
\begin{aligned}
C_{n} p_{j} & =\lambda_{j} p_{j}, \quad \frac{1}{n} K_{n} u_{j}=\lambda_{j} u_{j}, \\
X_{n} p_{j} & =\sqrt{\lambda_{j}} u_{j}, \quad \frac{1}{n} X_{n}^{T} u_{j}=\sqrt{\lambda_{j}} p_{j},
\end{aligned}
$$

PCA and Feature Maps

$$
(M(x))^{j}=\frac{1}{\sqrt{\lambda_{j}}} \sum_{i=1}^{n} x^{T} x_{i} u_{i}^{i}
$$

What if consider a non linear feature-map $\Phi: X \rightarrow F$, before performing PCA?

PCA and Feature Maps

$$
(M(x))^{j}=\frac{1}{\sqrt{\lambda_{j}}} \sum_{i=1}^{n} x^{T} x_{i} u_{i}^{i}
$$

What if consider a non linear feature-map $\Phi: X \rightarrow F$, before performing PCA?

$$
(M(x))^{j}=\Phi(x)^{T} p_{j}=\frac{1}{\sqrt{\lambda_{j}}} \sum_{i=1}^{n} \Phi(x)^{T} \Phi\left(x_{i}\right) u_{j}^{i}
$$

where $K_{n} \sigma_{j}=\sigma_{j} u_{j}$ and $\left(K_{n}\right)_{i, j}=\Phi(x)^{T} \Phi\left(x_{j}\right)$.

Kernel PCA

$$
(M(x))^{j}=\Phi(x)^{T} p_{j}=\frac{1}{\sqrt{\lambda_{j}}} \sum_{i=1}^{n} \Phi(x)^{T} \Phi\left(x_{i}\right) u_{j}^{i}
$$

If the feature map is defined by a positive definite kernel $K: X \times X \rightarrow \mathbb{R}$, then

$$
(M(x))^{j}=\frac{1}{\sqrt{\lambda_{j}}} \sum_{i=1}^{n} K\left(x, x_{i}\right) u_{j}^{i}
$$

where $K_{n} \sigma_{j}=\sigma_{j} u_{j}$ and $\left(K_{n}\right)_{i, j}=K\left(x_{i}, x_{j}\right)$.

Wrapping Up

In this class we introduced PCA as a basic tool for dimensionality reduction. We discussed computational aspect and extensions to non linear dimensionality reduction (KPCA)

Next Class

In the next class, beyond dimensionality reduction, we ask how we can devise interpretable data models, and discuss a class of methods based on the concept of sparsity.

