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ABOUT THIS CLASS

GOAL To introduce a useful family of hypothesis spaces
called Reproducing Kernel Hilbert Spaces
(RKHS);
To discuss how to design regularization via RKHS;
To show how to solve computationally
nonparametric learning models.
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REGULARIZATION

The basic idea of regularization (originally introduced
independently of the learning problem) is to restore
well-posedness of ERM by constraining the hypothesis space
H.

REGULARIZATION

A possible way to do this is considering regularized empirical
risk minimization, that is we look for solutions minimizing a two
term functional

Error(f )︸ ︷︷ ︸
empirical error

+λ R(f )︸︷︷︸
regularizer

the regularization parameter λ trade-offs the two terms.
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TIKHONOV REGULARIZATION

Tikhonov regularization amounts to minimize

1
n

n∑
i=1

V (f (xi), yi) + λR(f ) λ > 0 (1)

V (f (x), y) is the loss function, that is the price we pay
when we predict f (x) in place of y
R(f ) is a regularizer– often R(f ) = ‖ · ‖H, the norm in the
function space H

The regularizer should encode some notion of smoothness of f .
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THE "INGREDIENTS" OF TIKHONOV REGULARIZATION

The scheme we just described is very general and by
choosing different loss functions V (f (x), y) we can recover
different algorithms
The main point we want to discuss is how to choose a
norm encoding some notion of smoothness/complexity of
the solution
Reproducing Kernel Hilbert Spaces allow us to do this in a
very powerful way
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PLAN

Part I: Reproducing Kernels
Part II: Feature Maps
Part II: Representer Theorem

Regularization Methods for High Dimensional Learning Kernels, Dictionary and Regularization



DIFFERENT VIEWS ON RKHS
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SOME FUNCTIONAL ANALYSIS

A function space F is a space whose elements are functions
f , for example f : Rd → R.

A norm is a nonnegative function ‖ · ‖ such that ∀f ,g ∈ F and
α ∈ R

1 ‖f‖ ≥ 0 and ‖f‖ = 0 iff f = 0;
2 ‖f + g‖ ≤ ‖f‖+ ‖g‖;
3 ‖αf‖ = |α| ‖f‖.

A norm can be defined via a inner product ‖f‖ =
√
〈f , f 〉.

A Hilbert space is a complete inner product space.
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EXAMPLES

Continuous functions C[a,b] :
a norm can be established by defining

‖f‖ = max
a≤x≤b

|f (x)|

(not a Hilbert space!)

Square integrable functions L2[a,b]:
it is a Hilbert space where the norm is induced by the dot
product

〈f ,g〉 =

∫ b

a
f (x)g(x)dx
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HYPOTHESIS SPACE: DESIDERATA

Hilbert Space.
Point-wise defined functions.
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PLAN

Part I: Reproducing Kernels
Part II: Feature Maps
Part III: Representer Theorem
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POSITIVE DEFINITE KERNELS

Let X be some set, for example a subset of Rd or Rd itself. A
kernel is a symmetric function K : X × X → R.

DEFINITION

A kernel K (t , s) is positive definite (pd) if

n∑
i,j=1

cicjK (ti , tj) ≥ 0

for any n ∈ N and choice of t1, ..., tn ∈ X and c1, ..., cn ∈ R.
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EXAMPLES OF PD KERNELS

Very common examples of symmetric pd kernels are
• Linear kernel

K (x , x ′) = x · x ′

• Gaussian kernel

K (x , x ′) = e−
‖x−x′‖2

σ2 , σ > 0

• Polynomial kernel

K (x , x ′) = (x · x ′ + 1)d , d ∈ N

For specific applications, designing an effective kernel is a
challenging problem.
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EXAMPLES OF PD KERNELS

Kernel are a very general concept. We can have kernel on
vectors, string, matrices, graphs, probabilities...
Combinations of Kernels allow to do integrate different
kinds of data.
Often times Kernel are views and designed to be similarity
measure (in this case it make sense to have normalized
kernels)

d(x , x ′)2 ∼ 2(1− K (x , x ′)).
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EXAMPLES OF PD KERNELS

Anova Kernels
Diffusion Kernels
String Kernels
p-spectrum kernels
All-subsequences kernels
P Kernel
Fisher Kernel
Marginal Kernel
Histogram Intersection Kernel
...
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BUILDING A HYPOTHESES SPACE FROM KERNELS

Given K one can construct the RKHS H as the completion of
the space of functions spanned by the set {Kx |x ∈ X} with a
suitable inner product (here Kx (·) = K (x , ·)).

The dot product of two functions f and g in span{Kx |x ∈ X}

f (x) =
s∑

i=1

αiKxi (x)

g(x) =
s′∑

i=1

βiKx ′i
(x)

is by definition

〈f ,g〉H =
s∑

i=1

s′∑
j=1

αiβjK (xi , x ′j ).
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REPRODUCING PROPERTY

By construction we have that

f (x) = 〈f ,Kx〉H

where we use the notation Kx (·) = K (x , ·).

As a consequence

sup
x∈X
|f (x)| ≤ sup

x∈X

√
K (x , x) ‖f‖H .
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NORMS IN RKHS AND SMOOTHNESS

Choosing different kernels one can show that the norm in the
corresponding RKHS encodes different notions of smoothness.

Paley-Wiener Space: Band limited functions. Consider the
set of functions

H := {f ∈ L2(R) | F (ω) ∈ [−a,a],a <∞}

with the usual L2 inner product. The norm

‖f‖2H =

∫
f (x)2dx =

∫ a

a
|F (ω)|2dω.

The kernel is K (x , x ′) = sin(a(x − x ′))/a(x − x ′).
Where F (ω) = F{f}(ω) =

∫∞
−∞ f (t)e−iωt dt is the Fourier

transform of f .
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NORMS IN RKHS AND SMOOTHNESS

Sobolev Space: consider f : R→ R. The norm

‖f‖2H =

∫
(f (x))2dx +

∫
(f ′(x))2dx =

∫
(ω2 + 1)|F (ω)|2dω

The kernel is K (x , x ′) = e−|x−x ′|.

Gaussian Kernel: the norm can be written as

‖f‖2H =
1

2πd

∫
|F (ω)|2exp

σ2ω2
2 dω.

The kernel is K (x , x ′) = e−|x−x ′|2 .
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LINEAR RKHS

Our function space is 1-dimensional lines

f (x) = w x

where the RKHS norm is simply

‖f‖2H = 〈f , f 〉H = w2

so that our measure of complexity is the slope of the line.
We want to separate two classes using lines and see how the
magnitude of the slope corresponds to a measure of complexity.
We will look at three examples and see that each example
requires more "complicated functions, functions with greater
slopes, to separate the positive examples from negative
examples.
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LINEAR CASE (CONT.)

Here are three datasets: a linear function should be used to
separate the classes. Notice that as the class distinction
becomes finer, a larger slope is required to separate the
classes.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

f(x
)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

f(X
)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

f(x
)

Regularization Methods for High Dimensional Learning Kernels, Dictionary and Regularization



PLAN
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FEATURE MAP AND FEATURE SPACE

A feature map is a map Φ : X → F , where F is a Hilbert space
and is called Feature Space.
Every feature map defines a kernel via

K (x , x ′) =
〈
Φ(x),Φ(x ′)

〉
.
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FROM KERNELS TO FEATURE MAPS

We can associate one (in fact many!) feature map to every
kernel.

Let Φ(x) = Kx . Then Φ : X → H.
Let Φ(x) = (ψj(x))j , where (ψj(x))j is an orthonormal basis
of H. Then Φ : X → `2.
Why?
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FROM FEATURE MAPS TO KERNELS

Often times, feature map, and hence kernels, are defined
through a dictionary of features

D = {φj , i = 1, . . . ,p | φj : X → R, ∀j}

where p ≤ ∞. We can interpret the φ’s as (possibly non linear)
measurements on the inputs.

K (x , x ′) =

p∑
j=1

φj(x)φj(x ′)

If p <∞ we can always define a feature map.
If p =∞ we need extra assumptions.
Which ones?
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FROM FEATURE MAP TO RKHS

The concept of feature map allows to give a new interpretation
of RKHS.

Functions can be seen as hyperplanes,

fw (x) = 〈w ,Φ(x)〉 .

This can be seen for any of the previous examples.
Let Φ(x) = Kx .
Let Φ(x) = (ψj(x))j .
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FEATURE MAPS ILLUSTRATED
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KERNEL "TRICK" AND KERNELIZATION

Any algorithm which works in a Euclidean space, hence
requiring only inner products in the computations, can be
kernelized

K (x , x ′) =
〈
Φ(x),Φ(x ′)

〉
.

Kernel PCA.
Kernel ICA.
Kernel CCA.
Kernel LDA.
Kernel...
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Part III: Regularization Networks and
Representer Theorem
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AGAIN TIKHONOV REGULARIZATION

The algorithms (Regularization Networks) that we want to study
are defined by an optimization problem over RKHS,

f λS = arg min
f∈H

1
n

n∑
i=1

V (f (xi), yi) + λ‖f‖2H

where the regularization parameter λ is a positive number, H is
the RKHS as defined by the pd kernel K (·, ·), and V (·, ·) is a
loss function.
Note that H is possibly infinite dimensional!
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EXISTENCE AND UNIQUENESS OF MINIMUM

If the positive loss function V (·, ·) is convex with respect to its
first entry, the functional

Φ[f ] =
1
n

n∑
i=1

V (f (xi), yi) + λ‖f‖2H

is strictly convex and coercive, hence it has exactly one local
(global) minimum.
Both the squared loss and the hinge loss are convex.
On the contrary the 0-1 loss

V = Θ(−f (x)y),

where Θ(·) is the Heaviside step function, is not convex.
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THE REPRESENTER THEOREM

AN IMPORTANT RESULT

The minimizer over the RKHS H, fS, of the regularized
empirical functional

IS[f ] + λ‖f‖2H,

can be represented by the expression

f λS (x) =
n∑

i=1

ciK (xi , x),

for some n-tuple (c1, . . . , cn) ∈ Rn.
Hence, minimizing over the (possibly infinite dimensional)
Hilbert space, boils down to minimizing over Rn.
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SKETCH OF PROOF

Define the linear subspace of H,

H0 = span({Kxi}i=1,...,n)

Let H⊥0 be the linear subspace of H,

H⊥0 = {f ∈ H|f (xi) = 0, i = 1, . . . ,n}.

From the reproducing property of H, ∀f ∈ H⊥0

〈f ,
∑

i

ciKxi 〉H =
∑

i

ci〈f ,Kxi 〉H =
∑

i

ci f (xi) = 0.

H⊥0 is the orthogonal complement of H0.
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SKETCH OF PROOF (CONT.)

Every f ∈ H can be uniquely decomposed in components along
and perpendicular to H0: f = f0 + f⊥0 .
Since by orthogonality

‖f0 + f⊥0 ‖2 = ‖f0‖2 + ‖f⊥0 ‖2,

and by the reproducing property

IS[f0 + f⊥0 ] = IS[f0],

then
IS[f0] + λ‖f0‖2H ≤ IS[f0 + f⊥0 ] + λ‖f0 + f⊥0 ‖2H.

Hence the minimum f λS = f0 must belong to the linear space H0.
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COMMON LOSS FUNCTIONS

The following two important learning techniques are
implemented by different choices for the loss function V (·, ·)
• Regularized least squares (RLS)

V = (y − f (x))2

• Support vector machines for classification (SVMC)

V = |1− yf (x)|+

where
(k)+ ≡ max(k ,0).
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TIKHONOV REGULARIZATION FOR RLS AND SVMS

In the next two classes we will study Tikhonov regularization
with different loss functions for both regression and
classification. We will start with the square loss and then
consider SVM loss functions.
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