KERNELS, DICTIONARY AND REGULARIZATION

Francesca Odone and Lorenzo Rosasco

RegML 2014

Regularization Methods for High Dimensional Learning Kernels, Dictionary and Regularization

GOAL To introduce a useful family of hypothesis spaces called Reproducing Kernel Hilbert Spaces (RKHS); To discuss how to design regularization via RKHS; To show how to solve computationally nonparametric learning models.

◆ロ ▶ ◆ □ ▶ ★ □ ▶ ★ □ ▶ ◆ □ ● ● の Q @

The basic idea of regularization (originally introduced independently of the learning problem) is to restore well-posedness of ERM by constraining the hypothesis space \mathcal{H} .

REGULARIZATION

A possible way to do this is considering *regularized* empirical risk minimization, that is we look for solutions minimizing a two term functional

$$\underbrace{\textit{Error}(f)}_{} +\lambda \quad \underbrace{\textit{R}(f)}_{}$$

empirical error

regularizer

(ロ) (聞) (ヨ) (ヨ) 三日

the regularization parameter λ trade-offs the two terms.

Tikhonov regularization amounts to minimize

$$\frac{1}{n}\sum_{i=1}^{n}V(f(x_i), y_i) + \lambda R(f) \quad \lambda > 0$$
(1)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- V(f(x), y) is the loss function, that is the price we pay when we predict f(x) in place of y
- *R*(*f*) is a regularizer often *R*(*f*) = ∥ · ∥_{*H*}, the norm in the function space *H*

The regularizer should encode some notion of smoothness of *f*.

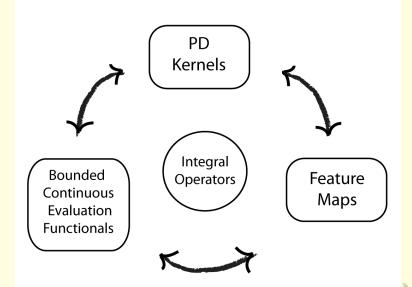
- The scheme we just described is very general and by choosing different loss functions *V*(*f*(*x*), *y*) we can recover different algorithms
- The main point we want to discuss is how to choose a norm encoding some notion of smoothness/complexity of the solution
- Reproducing Kernel Hilbert Spaces allow us to do this in a very powerful way

◆ロ ▶ ◆ □ ▶ ★ □ ▶ ★ □ ▶ ◆ □ ● ● の Q @

- Part I: Reproducing Kernels
- Part II: Feature Maps
- Part II: Representer Theorem

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

DIFFERENT VIEWS ON RKHS



Regularization Methods for High Dimensional Learning Kernels, Dictionary and Regularization

A **norm** is a nonnegative function $\|\cdot\|$ such that $\forall f, g \in \mathcal{F}$ and $\alpha \in \mathbb{R}$

•
$$||f|| \ge 0$$
 and $||f|| = 0$ iff $f = 0$;

2
$$||f+g|| \le ||f|| + ||g||;$$

 $\|\alpha f\| = |\alpha| \|f\|.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A **norm** is a nonnegative function $\|\cdot\|$ such that $\forall f, g \in \mathcal{F}$ and $\alpha \in \mathbb{R}$

•
$$||f|| \ge 0$$
 and $||f|| = 0$ iff $f = 0$;

2
$$||f + g|| \le ||f|| + ||g||;$$

$$\|\alpha f\| = |\alpha| \|f\|.$$

A norm can be defined via a **inner product** $||f|| = \sqrt{\langle f, f \rangle}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A **norm** is a nonnegative function $\|\cdot\|$ such that $\forall f, g \in \mathcal{F}$ and $\alpha \in \mathbb{R}$

•
$$||f|| \ge 0$$
 and $||f|| = 0$ iff $f = 0$;

2
$$||f+g|| \le ||f|| + ||g||;$$

$$\|\alpha f\| = |\alpha| \|f\|.$$

A norm can be defined via a **inner product** $||f|| = \sqrt{\langle f, f \rangle}$. A **Hilbert space** is a complete inner product space.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Continuous functions C[a, b]:
 a norm can be established by defining

$$\|f\| = \max_{a \le x \le b} |f(x)|$$

(not a Hilbert space!)

Regularization Methods for High Dimensional Learning Kernels, Dictionary and Regularization

 Continuous functions C[a, b]: a norm can be established by defining

$$\|f\| = \max_{a \le x \le b} |f(x)|$$

(not a Hilbert space!)

 Square integrable functions L₂[a, b]: it is a Hilbert space where the norm is induced by the dot product

$$\langle f,g\rangle = \int_a^b f(x)g(x)dx$$

イロト 不得 トイヨト イヨト 二日

- Hilbert Space.
- Point-wise defined functions.

Regularization Methods for High Dimensional Learning Kernels, Dictionary and Regularization

◆ロト ◆課 ト ◆注 ト ◆注 ト ○注 … のへで

- Part I: Reproducing Kernels
- Part II: Feature Maps
- Part III: Representer Theorem

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

Let X be some set, for example a subset of \mathbb{R}^d or \mathbb{R}^d itself. A *kernel* is a symmetric function $K : X \times X \to \mathbb{R}$.

DEFINITION

A kernel K(t, s) is positive definite (pd) if

$$\sum_{j=1}^n c_i c_j K(t_i, t_j) \ge 0$$

イロト 不得 トイヨト イヨト 二日

for any $n \in \mathbb{N}$ and choice of $t_1, ..., t_n \in X$ and $c_1, ..., c_n \in \mathbb{R}$.

Regularization Methods for High Dimensional Learning Kernels, Dictionary and Regularization

Very common examples of symmetric pd kernels are • Linear kernel

$$K(x,x')=x\cdot x'$$

Gaussian kernel

$$\mathcal{K}(\mathbf{x},\mathbf{x}') = \mathrm{e}^{-rac{\|\mathbf{x}-\mathbf{x}'\|^2}{\sigma^2}}, \qquad \sigma > \mathbf{0}$$

Polynomial kernel

$$K(x,x') = (x \cdot x' + 1)^d, \qquad d \in \mathbb{N}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

For specific applications, designing an effective kernel is a challenging problem.

- Kernel are a very general concept. We can have kernel on vectors, string, matrices, graphs, probabilities...
- Combinations of Kernels allow to do integrate different kinds of data.
- Often times Kernel are views and designed to be similarity measure (in this case it make sense to have normalized kernels)

$$d(x, x')^2 \sim 2(1 - K(x, x')).$$

<ロト < 同ト < 三ト < 三ト < 三 ・ へのく

- Anova Kernels
- Diffusion Kernels
- String Kernels
- p-spectrum kernels
- All-subsequences kernels
- P Kernel
- Fisher Kernel
- Marginal Kernel
- Histogram Intersection Kernel
- ...

BUILDING A HYPOTHESES SPACE FROM KERNELS

Given *K* one can construct the RKHS \mathcal{H} as the *completion* of the space of functions spanned by the set { $K_x | x \in X$ } with a suitable inner product (here $K_x(\cdot) = K(x, \cdot)$).

Regularization Methods for High Dimensional Learning Kernels, Dictionary and Regularization

BUILDING A HYPOTHESES SPACE FROM KERNELS

Given *K* one can construct the RKHS \mathcal{H} as the *completion* of the space of functions spanned by the set { $K_x | x \in X$ } with a suitable inner product (here $K_x(\cdot) = K(x, \cdot)$).

The dot product of two functions f and g in span{ $K_x | x \in X$ }

$$f(x) = \sum_{i=1}^{s} \alpha_i K_{x_i}(x)$$
$$g(x) = \sum_{i=1}^{s'} \beta_i K_{x_i'}(x)$$

is by definition

$$\langle f, \boldsymbol{g} \rangle_{\mathcal{H}} = \sum_{i=1}^{s} \sum_{j=1}^{s'} \alpha_i \beta_j K(\boldsymbol{x}_i, \boldsymbol{x}'_j).$$

Kernels, Dictionary and Regularization

<ロト < 同ト < 三ト < 三ト < 三 ・ へのく

By construction we have that

$$f(x) = \langle f, K_x \rangle_{\mathcal{H}}$$

where we use the notation $K_x(\cdot) = K(x, \cdot)$.

As a consequence

$$\sup_{x\in X} |f(x)| \le \sup_{x\in X} \sqrt{K(x,x)} \, \|f\|_{\mathcal{H}}$$

Regularization Methods for High Dimensional Learning Kernels, Dictionary and Regularization

Choosing different kernels one can show that the norm in the corresponding RKHS encodes different notions of smoothness.

Regularization Methods for High Dimensional Learning Kernels, Dictionary and Regularization

Choosing different kernels one can show that the norm in the corresponding RKHS encodes different notions of smoothness.

Paley-Wiener Space: Band limited functions. Consider the set of functions

$$\mathcal{H} := \{ f \in L^2(\mathbb{R}) \mid F(\omega) \in [-a, a], a < \infty \}$$

with the usual L^2 inner product. The norm

$$\|f\|_{\mathcal{H}}^2 = \int f(x)^2 dx = \int_a^a |F(\omega)|^2 d\omega.$$

<ロト < 同ト < 三ト < 三ト < 三 ・ へのく

The kernel is K(x, x') = sin(a(x - x'))/a(x - x'). Where $F(\omega) = \mathcal{F}{f}(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt$ is the Fourier transform of *f*.

• Sobolev Space: consider $f : \mathbb{R} \to \mathbb{R}$. The norm

$$\|f\|_{\mathcal{H}}^2 = \int (f(x))^2 dx + \int (f'(x))^2 dx = \int (\omega^2 + 1) |F(\omega)|^2 d\omega$$

The kernel is $K(x, x') = e^{-|x-x'|}$.

• Sobolev Space: consider $f : \mathbb{R} \to \mathbb{R}$. The norm

$$\|f\|_{\mathcal{H}}^{2} = \int (f(x))^{2} dx + \int (f'(x))^{2} dx = \int (\omega^{2} + 1) |F(\omega)|^{2} d\omega$$

The kernel is $K(x, x') = e^{-|x-x'|}$.

Gaussian Kernel: the norm can be written as

$$\|f\|_{\mathcal{H}}^2 = \frac{1}{2\pi^d} \int |F(\omega)|^2 exp^{\frac{\sigma^2 \omega^2}{2}} d\omega.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The kernel is $K(x, x') = e^{-|x-x'|^2}$.

• Sobolev Space: consider $f : \mathbb{R} \to \mathbb{R}$. The norm

$$\|f\|_{\mathcal{H}}^{2} = \int (f(x))^{2} dx + \int (f'(x))^{2} dx = \int (\omega^{2} + 1) |F(\omega)|^{2} d\omega$$

The kernel is $K(x, x') = e^{-|x-x'|}$.

Gaussian Kernel: the norm can be written as

$$\|f\|_{\mathcal{H}}^2 = \frac{1}{2\pi^d} \int |F(\omega)|^2 exp^{\frac{\sigma^2 \omega^2}{2}} d\omega.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The kernel is $K(x, x') = e^{-|x-x'|^2}$.

Our function space is 1-dimensional lines

f(x) = w x

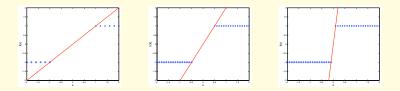
where the RKHS norm is simply

$$\|f\|_{\mathcal{H}}^2 = \langle f, f \rangle_{\mathcal{H}} = w^2$$

so that our measure of complexity is the slope of the line. We want to separate two classes using lines and see how the magnitude of the slope corresponds to a measure of complexity. We will look at three examples and see that each example requires more "complicated functions, functions with greater slopes, to separate the positive examples from negative examples.

◆ロ ▶ ◆ □ ▶ ★ □ ▶ ★ □ ▶ ◆ □ ● ● の Q @

Here are three datasets: a linear function should be used to separate the classes. Notice that as the class distinction becomes finer, a larger slope is required to separate the classes.



・ロト ・ 雪 ト ・ ヨ ト ・

-

Regularization Methods for High Dimensional Learning Kernels, Dictionary and Regularization

- Part I: Reproducing Kernels
- Part II: Feature Maps
- Part III: Representer Theorem

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

A feature map is a map $\Phi : X \to \mathcal{F}$, where \mathcal{F} is a Hilbert space and is called Feature Space. Every feature map defines a kernel via

$$K(x,x') = \langle \Phi(x), \Phi(x') \rangle.$$

Regularization Methods for High Dimensional Learning Kernels, Dictionary and Regularization

We can associate one (in fact many!) feature map to every kernel.

- Let $\Phi(x) = K_x$. Then $\Phi : X \to \mathcal{H}$.
- Let $\Phi(x) = (\psi_j(x))_j$, where $(\psi_j(x))_j$ is an orthonormal basis of \mathcal{H} . Then $\Phi : X \to \ell^2$. Why?

FROM FEATURE MAPS TO KERNELS

Often times, feature map, and hence kernels, are defined through a dictionary of features

$$\mathcal{D} = \{\phi_j, \ i = 1, \dots, p \mid \phi_j : X \to \mathbb{R}, \ \forall j\}$$

where $p \le \infty$. We can interpret the ϕ 's as (possibly non linear) *measurements* on the inputs.

FROM FEATURE MAPS TO KERNELS

Often times, feature map, and hence kernels, are defined through a dictionary of features

$$\mathcal{D} = \{\phi_j, \ i = 1, \dots, p \mid \phi_j : X \to \mathbb{R}, \ \forall j\}$$

where $p \le \infty$. We can interpret the ϕ 's as (possibly non linear) *measurements* on the inputs.

$$K(\mathbf{x},\mathbf{x}') = \sum_{j=1}^{p} \phi_j(\mathbf{x}) \phi_j(\mathbf{x}')$$

Regularization Methods for High Dimensional Learning Kernels, Dictionary and Regularization

FROM FEATURE MAPS TO KERNELS

Often times, feature map, and hence kernels, are defined through a dictionary of features

$$\mathcal{D} = \{\phi_j, \ i = 1, \dots, p \mid \phi_j : X \to \mathbb{R}, \ \forall j\}$$

where $p \le \infty$. We can interpret the ϕ 's as (possibly non linear) *measurements* on the inputs.

$$\mathcal{K}(\mathbf{x},\mathbf{x}') = \sum_{j=1}^{p} \phi_j(\mathbf{x}) \phi_j(\mathbf{x}')$$

- If $p < \infty$ we can always define a feature map.
- If $p = \infty$ we need extra assumptions. Which ones?

The concept of feature map allows to give a new interpretation of RKHS.

Functions can be seen as hyperplanes,

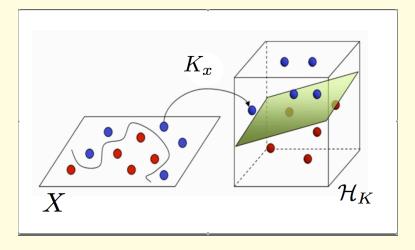
$$f_w(x) = \langle w, \Phi(x) \rangle.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

This can be seen for any of the previous examples.

- Let $\Phi(x) = K_x$.
- Let $\Phi(x) = (\psi_j(x))_j$.

FEATURE MAPS ILLUSTRATED



Regularization Methods for High Dimensional Learning Kernels, Dictionary and Regularization

Any algorithm which works in a Euclidean space, hence requiring only inner products in the computations, can be *kernelized*

$$K(x, x') = \langle \Phi(x), \Phi(x') \rangle.$$

- Kernel PCA.
- Kernel ICA.
- Kernel CCA.
- Kernel LDA.
- Kernel...

Part III: Regularization Networks and Representer Theorem

Regularization Methods for High Dimensional Learning Kernels, Dictionary and Regularization

イロト 不得 トイヨト イヨト 二日

The algorithms (*Regularization Networks*) that we want to study are defined by an optimization problem over RKHS,

$$f_{\mathcal{S}}^{\lambda} = \arg\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} V(f(x_i), y_i) + \lambda \|f\|_{\mathcal{H}}^2$$

where the *regularization parameter* λ is a positive number, \mathcal{H} is the RKHS as defined by the *pd kernel* $K(\cdot, \cdot)$, and $V(\cdot, \cdot)$ is a **loss function**.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Note that \mathcal{H} is possibly infinite dimensional!

If the positive loss function $V(\cdot, \cdot)$ is convex with respect to its first entry, the functional

$$\Phi[f] = \frac{1}{n} \sum_{i=1}^{n} V(f(x_i), y_i) + \lambda \|f\|_{\mathcal{H}}^2$$

is *strictly convex* and *coercive*, hence it has exactly one local (global) minimum.

Both the squared loss and the hinge loss are convex.

On the contrary the 0-1 loss

$$V = \Theta(-f(x)y),$$

・ロト ・ 同ト ・ ヨト ・ ヨト

where $\Theta(\cdot)$ is the Heaviside step function, is **not** convex.

AN IMPORTANT RESULT

The minimizer over the RKHS \mathcal{H} , f_S , of the regularized empirical functional

 $I_{\mathcal{S}}[f] + \lambda \|f\|_{\mathcal{H}}^2,$

can be represented by the expression

$$f_{\mathcal{S}}^{\lambda}(x) = \sum_{i=1}^{n} c_i \mathcal{K}(x_i, x),$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

for some *n*-tuple $(c_1, \ldots, c_n) \in \mathbb{R}^n$. Hence, minimizing over the (possibly infinite dimensional) Hilbert space, *boils down to minimizing over* \mathbb{R}^n . Define the linear subspace of \mathcal{H} ,

 $\mathcal{H}_0 = \operatorname{span}(\{K_{x_i}\}_{i=1,\ldots,n})$

Let \mathcal{H}_0^{\perp} be the linear subspace of \mathcal{H} ,

$$\mathcal{H}_0^{\perp} = \{f \in \mathcal{H} | f(x_i) = 0, i = 1, \ldots, n\}.$$

From the reproducing property of $\mathcal{H}, \forall f \in \mathcal{H}_0^{\perp}$

$$\langle f, \sum_{i} c_{i} K_{x_{i}} \rangle_{\mathcal{H}} = \sum_{i} c_{i} \langle f, K_{x_{i}} \rangle_{\mathcal{H}} = \sum_{i} c_{i} f(x_{i}) = 0.$$

ヘロン 人間 とくほど 人ほど 一日

 \mathcal{H}_0^{\perp} is the orthogonal complement of \mathcal{H}_0 .

Every $f \in \mathcal{H}$ can be uniquely decomposed in components along and perpendicular to \mathcal{H}_0 : $f = f_0 + f_0^{\perp}$. Since by orthogonality

$$||f_0 + f_0^{\perp}||^2 = ||f_0||^2 + ||f_0^{\perp}||^2,$$

and by the reproducing property

$$I_{\mathcal{S}}[f_0+f_0^{\perp}]=I_{\mathcal{S}}[f_0],$$

then

$$I_{\mathcal{S}}[f_0] + \lambda \|f_0\|_{\mathcal{H}}^2 \leq I_{\mathcal{S}}[f_0 + f_0^{\perp}] + \lambda \|f_0 + f_0^{\perp}\|_{\mathcal{H}}^2.$$

Hence the minimum $f_{\mathcal{S}}^{\lambda} = f_0$ must belong to the linear space \mathcal{H}_0 .

イロト 不得 トイヨト イヨト 二日

The following two important learning techniques are implemented by different choices for the loss function $V(\cdot, \cdot)$

• Regularized least squares (RLS)

$$V = (y - f(x))^2$$

Support vector machines for classification (SVMC)

$$V = |1 - yf(x)|_+$$

where

$$(k)_+ \equiv \max(k, 0).$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Regularization Methods for High Dimensional Learning Kernels, Dictionary and Regularization

In the next two classes we will study Tikhonov regularization with different loss functions for both regression and classification. We will start with the square loss and then consider SVM loss functions.

Regularization Methods for High Dimensional Learning Kernels, Dictionary and Regularization

◆□ > ◆□ > ◆ □ > ◆ □ > → □ → へ ○ ◆