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ABOUT THIS CLASS

GOAL To discuss the choice of the regularization
parameter, giving a brief description of the
theoretical results and an overview of a few
heuristics used in practice.
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PLAN

The general problem: model selection
Error analysis: sketch

error decomposition: the bias variance trade-off
sample error
approximation error

Heuristics
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REGULARIZATION PARAMETER

We have seen that a learning algorithm can be seen as a map

S → fS

from the training set to the hypotheses space.

Actually most learning algorithms define a one parameter
family of solutions, i.e.

given λ > 0
S → f λS
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EXAMPLES

Tikhonov regularization
Spectral regularization
Sparsity based regularization
Manifold regularization

but also SVM, boosting....

In all these algorithms one (or more parameters) control the
smoothness of the solution and has to be tuned to find the final
solution.

Actual algorithms can often be seen as a two step procedures.
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OPTIMAL CHOICE

We can start asking:

1 whether there exists an optimal parameter choice
2 what it depends on
3 and most importantly if we can design a scheme to find it.

Remember that our goal is to have good generalization
properties...
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ORACLE CHOICE

Recall that the training set S is sampled i.i.d with respect to
p(x , y).

Ideally we want to choose λ to make the generalization error
small.
Recall that

I[f ] =
∫

X×Y
V (f (x), y)p(x , y)dxdy

EXCESS RISK

I[f λS ]− inf
f
{I[f ]
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CONSISTENCY

A minimal requirement on the parameter choice λ = λn is that it
should lead to consistency.

CONSISTENCY

For all ε > 0

lim
n→∞

P{I[f λn
S ]− inf

f
I[f ]} > ε} = 0
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PROBABILISTIC BOUND

A possible approach is that of:
1) finding a suitable probabilistic bound for fixed λ,
2) minimizing the bound w.r.t. λ.

For λ > 0, and for 0 < η ≤ 1, with probability at least 1− η

I[f λS ]− inf
f
{I[f ]} ≤ ε(η, λ,n)

Regularization Methods for High Dimensional Learning Model Selection and Regularization Parameter Choice



PROBABILISTIC BOUND

A possible approach is that of:
1) finding a suitable probabilistic bound for fixed λ,
2) minimizing the bound w.r.t. λ.

For λ > 0, and for 0 < η ≤ 1, with probability at least 1− η

I[f λS ]− inf
f
{I[f ]} ≤ ε(η, λ,n)

Regularization Methods for High Dimensional Learning Model Selection and Regularization Parameter Choice



A PRIORI PARAMETER CHOICE

We can then define the parameter choice λ∗ = λ(η,n)
minimizing the bound, i.e.

min
λ
ε(η, λ,n)

We have yet to see how to find a bound...
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ERROR DECOMPOSITION

The first step is, often, to consider a suitable error
decomposition

I[f λS ]− inf
f
{I[f ]} = I[f λS ]− I[f λ] + I[f λ]− inf

f
{I[f ]}

The function f λ is the infinite sample regularized solution, for
example in Tikhonov regularization is the solution of

min
f∈H

∫
X×Y

V (f (x), y)p(x , y)dxdy + λ‖f‖2H

Regularization Methods for High Dimensional Learning Model Selection and Regularization Parameter Choice



ERROR DECOMPOSITION (CONT.)

Consider

I[f λS ]− inf
f
{I[f ]} = I[f λS ]− I[f λ]︸ ︷︷ ︸

sample error

+ I[f λ]− inf
f
{I[f ]}︸ ︷︷ ︸

approximation error

The sample error I[f λS ]− I[f λ] quantifies the error due to
finite sampling/noise
The approximation error I[f λ]− inff{I[f ]} quantifies the bias
error due to the chosen regularization scheme
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TRADE-OFF

The two terms typically have the following behavior

n

errors

sample
error

approximation
error

λλ

The parameter choice λ∗ solves a bias variance trade-off.
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SAMPLE ERROR

I[f λS ]− I[f λ]︸ ︷︷ ︸
sample error

To study the sample error, we have to compare empirical
quantities to expected quantities.
The main mathematical tools we can use are quantitative
version of the law of large numbers.

min
f∈H

1
n

n∑
i=1

V (f (xi), yi) + λ‖f‖2H

min
f∈H

∫
X×Y

V (f (x), y)p(x , y)dxdy + λ‖f‖2H
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CONCENTRATION INEQUALITIES

If ξ1, . . . , ξn i.i.d. zero mean real random variables and
|ξi | ≤ C, i = 1, . . . ,n, then Höeffding inequality ensures that
∀ε > 0

P{|1
n

∑
i

ξi | ≥ ε} ≤ 2e−
nε2

2C2

or equivalently setting τ = nε2

2C2 we have with probability at least
(with confidence) 1− 2e−τ

|1
n

∑
i

ξi | ≤
C
√

2τ√
n

.
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THE CASE OF TIKHONOV REGULARIZATION

The explicit form of the sample error is typically of the form

I[f λS ]− I[f λ] ≤
C
√

log 2
η

λn

where the above bound holds with with probability at least
1− η.

If λ decreases sufficiently slow the sample error goes to zero as
n increases.
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APPROXIMATION ERROR

Compare f λ and f ∗ solving:

min
f∈H

∫
X×Y

V (f (x), y)p(x , y)dxdy + λ‖f‖2

and
min
f∈H

∫
X×Y

V (f (x), y)p(x , y)dxdy

The approximation error is purely deterministic.

It is typically easy to prove that it decreases as λ
decreases.

The explicit behavior depends on the problem at hand.

The last problem is an instance of the so called no free lunch
theorem
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FEW BASIC QUESTIONS

Can we learn consistently any problem? YES! Consider

I[f λS ]− inf
f
{I[f ]} ≤

C
√

log 2
η

λn
+

(
I[f λ]− inf

f
{I[f ]}

)
with probability at least 1− η.

Can we always learn at some prescribed speed? NO! it
depends on the problem!

The latter statement is the called no free lunch theorem.
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APPROXIMATION ERROR (CONT.)

We have to restrict to a class of problems. Typical examples:
the target function f ∗ minimizing I[f ] belongs to a RKHS
the target function f ∗ belongs to some Sobolev Space with
smoothness s
the target function f ∗ depends only on a few variables
...

Usually the regularity of the target function is summarized in a
regularity index r and the approximation error depends on such
index

I[f λ]− I[f ∗] ≤ Cλ2r
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PUTTING ALL TOGETHER

Putting all together we get with probability at least 1− η,

I[f λS ]− inf
f
{I[f ]} ≤

C
√

log 2
η

λn
+ Cλ2r

We choose λn = n−
1

2r+1 to optimize the bound
If we set fS = f λn

S we get with high probability

I[fS]− inf
f
{I[f ]} ≤ Cn−

2r
2r+1

√
log

2
η
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PROBABLY APPROXIMATIVELY CORRECT (PAC)

If we set fS = f λn
S we get with high probability

I[fS]− inf
f
{I[f ]} ≤ Cn−

2r
2r+1

√
log

2
η

There are also other ways of writing the bound.

SAMPLE COMPLEXITY (PAC)

If n ≥ n(ε, η, r), then, with probability at least 1− η,

I[fS]− inf
f
{I[f ]} ≤ ε
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ADAPTIVITY

The parameter choice λn = n−
2r

2r+1 depends on the
regularity index r which is typically unknown.
Ideally we would want (adaptive ) parameter choices not
depending on r and still achieving the rate n−

2r
2r+1 .
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THE THEORY AND THE TRUTH

The bounds are often asymptotically tight and in fact the
rates are optimal in a suitable sense

Nonetheless we often pay the price of the great generality
under which they hold in that they are often pessimistic
Constants are likely to be non optimal
In practice we have to resort to heuristics to choose the
regularization parameter

WHY TO CARE ABOUT BOUNDS?
typically in proving them we learn something about the
problems and the algorithms we use
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HOLD-OUT ESTIMATE

One of the most common heuristics is probably the following:

HOLD OUT ESTIMATES

Split training set S in S1 and S2.
Find estimators on S1 for different λ.
Choose λ minimizing the empirical error on S2.

Repeat for different splits and average answers.
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CROSS VALIDATION

When the data are few other strategies are preferable that are
variations of hold-out.

K-FOLD CROSS-VALIDATION

Split training set S in k groups.
For fixed λ, train on all k − 1 groups, test on the group left
out and sum up the errors
Repeat for different values of λ and choose the one
minimizing the cross validation error

One can repeat for different splits and average answers to
decrease variance

When the data are really few we can take k = n, this strategy is
called leave one-out (LOO)
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IMPLEMENTATION: REGULARIZATION PATH

The real computational price is often the one for finding the
solutions for several regularization parameter values (so
called regularization path).
In this view we can somewhat reconsider the different
computational prices of spectral regularization schemes.
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LOO IMPLEMENTATION FOR RLS

In the case of Tikhonov regularization there is a simple closed
form for the LOO

LOO(λ) =
n∑

i=1

(yi − f λS (xi))

(I − K (K + λnI)−1)ii

If we can compute (I − K (K + λnI)−1)ii easily the price of LOO
(for fixed λ) is that of calculating f λS

It turns out that computing the eigen-decomposition of the
kernel matrix can be actually convenient in this case
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HOW SHOULD WE EXPLORE THE PARAMETER

RANGE?

In practice we have to choose several things.

Minimum and maximum value? We can look at the
maximum and minimum eigenvalues of the kernel matrix to
have a reasonable range (iterative methods don’t need any
though)
Step size? the answer is different depending on the
algorithm

for iterative and projections methods the regularization is
intrinsically discrete, for Tikhonov regularization we can
take a geometric series λi = λ0q i , for some q > 1.
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WHAT ABOUT KERNEL PARAMETERS?

So far we only talked about λ and not about kernel parameters

Both parameters controls the complexity of the solution
Clearly we can minimize the cross validation error w.r.t.
both parameters
Often a rough choice of a kernel parameter can be allowed
if we eventually fine tune λ

For the gaussian kernel a reasonable value of the width σ can
be often chosen looking at some statistics of the distances
among input points
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WHAT ABOUT KERNEL PARAMETERS?

So far we only talked about λ and not about kernel parameters

Optimal parameter choice can be defined in theory.
They are defined in terms of finite sample bounds and
depend on prior assumptions on the problem.
In practice heuristics are typically adopted.
In practice many regularization parameter need to be
chosen.

Parameter choice is a HUGE unsolved problem.
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