# RegML 2016 

Class 5

# Sparsity based regularization 

Lorenzo Rosasco
UNIGE-MIT-IIT

June 30, 2016

## Learning from data

Possible only under assumptions $\rightarrow$ regularization

$$
\min _{w} \widehat{\mathcal{E}}(w)+\lambda R(w)
$$

- Smoothness
- Sparsity


## Sparsity

The function of interest depends on few building blocks

## Why sparsity

- Interpretability
- High dimensional statistics
- Compression


## What is sparsity?

$$
f(x)=\sum_{j=1}^{d} x_{j} w_{j}
$$

Sparse coefficients: few $w_{j} \neq 0$

## Sparsity and dictionaries

More generally consider

$$
f(x)=\sum_{j=1}^{p} \phi_{j}(x) w_{j}
$$

with $\phi_{1}, \ldots, \phi_{p}$ dictionary.

The concept of sparsity requires depends on the considered dictionary.

## Linear inverse problem


$n<d$ more variables than observations

## Sparse regularization

$$
\min _{w} \frac{1}{n}\|\hat{X} w-\hat{y}\|^{2}+\lambda \psi w \psi_{2}^{*}\|w\|_{0}
$$

$\ell_{0}$-norm

$$
\|w\|_{0}=\sum_{j=1}^{d} \mathbf{1}_{\left\{w_{j} \neq 0\right\}}
$$

## Best subset selection

## Best subset selection

$$
\min _{w} \frac{1}{n}\|\hat{X} w-\hat{y}\|^{2}+\lambda\|w\|_{0}
$$

as hard as trying all possible subsets...

## Best subset selection

$$
\min _{w} \frac{1}{n}\|\hat{X} w-\hat{y}\|^{2}+\lambda\|w\|_{0}
$$

as hard as trying all possible subsets...

1. Greedy methods
2. Convex relaxations

## Greedy methods

Initalize, then

- Select a variable
- Compute solution
- Update
- Repeat


## Matching pursuit

$$
r_{0}=\hat{y}, \quad w_{0}=0, \quad I_{0}=\emptyset
$$

for $i=1$ to $T$

- Let $\hat{X}_{j}=\hat{X} e_{j}$, and select $j \in\{1, \ldots, d\}$ maximizing ${ }^{1}$

$$
a_{j}=\frac{v_{j}^{2}}{\left\|\hat{X}_{j}\right\|^{2}}, \quad \text { with } \quad v_{j}=r_{i-1}^{\top} \hat{X}_{j}
$$

${ }^{1}$ Note that

$$
v_{j}=\underset{v \in \mathbb{R}}{\operatorname{argmin}}\left\|\hat{X}_{j} v-r_{i-1}\right\|^{2}, \quad \text { and, } \quad a_{j}=\left\|\hat{X}_{j} v_{j}-r_{i-1}\right\|^{2}
$$

## Matching pursuit

$$
r_{0}=\hat{y}, \quad w_{0}=0, \quad I_{0}=\emptyset
$$

for $i=1$ to $T$

- Let $\hat{X}_{j}=\hat{X} e_{j}$, and select $j \in\{1, \ldots, d\}$ maximizing ${ }^{1}$

$$
a_{j}=\frac{v_{j}^{2}}{\left\|\hat{X}_{j}\right\|^{2}}, \quad \text { with } \quad v_{j}=r_{i-1}^{\top} \hat{X}_{j}
$$

- $I_{i}=I_{i-1} \cup\{j\}$,
${ }^{1}$ Note that

$$
v_{j}=\underset{v \in \mathbb{R}}{\operatorname{argmin}}\left\|\hat{X}_{j} v-r_{i-1}\right\|^{2}, \quad \text { and, } \quad a_{j}=\left\|\hat{X}_{j} v_{j}-r_{i-1}\right\|^{2}
$$

## Matching pursuit

$$
r_{0}=\hat{y}, \quad w_{0}=0, \quad I_{0}=\emptyset
$$

for $i=1$ to $T$

- Let $\hat{X}_{j}=\hat{X} e_{j}$, and select $j \in\{1, \ldots, d\}$ maximizing ${ }^{1}$

$$
a_{j}=\frac{v_{j}^{2}}{\left\|\hat{X}_{j}\right\|^{2}}, \quad \text { with } \quad v_{j}=r_{i-1}^{\top} \hat{X}_{j}
$$

- $I_{i}=I_{i-1} \cup\{j\}$,
- $w_{i}=w_{i-1}+v_{j} e_{j}$
${ }^{1}$ Note that

$$
v_{j}=\underset{v \in \mathbb{R}}{\operatorname{argmin}}\left\|\hat{X}_{j} v-r_{i-1}\right\|^{2}, \quad \text { and, } \quad a_{j}=\left\|\hat{X}_{j} v_{j}-r_{i-1}\right\|^{2}
$$

## Matching pursuit

$$
r_{0}=\hat{y}, \quad w_{0}=0, \quad I_{0}=\emptyset
$$

for $i=1$ to $T$

- Let $\hat{X}_{j}=\hat{X} e_{j}$, and select $j \in\{1, \ldots, d\}$ maximizing ${ }^{1}$

$$
a_{j}=\frac{v_{j}^{2}}{\left\|\hat{X}_{j}\right\|^{2}}, \quad \text { with } \quad v_{j}=r_{i-1}^{\top} \hat{X}_{j}
$$

- $I_{i}=I_{i-1} \cup\{j\}$,
- $w_{i}=w_{i-1}+v_{j} e_{j}$
- $r_{i}=r_{i-1}-\hat{X} w_{i}$
${ }^{1}$ Note that

$$
v_{j}=\underset{v \in \mathbb{R}}{\operatorname{argmin}}\left\|\hat{X}_{j} v-r_{i-1}\right\|^{2}, \quad \text { and, } \quad a_{j}=\left\|\hat{X}_{j} v_{j}-r_{i-1}\right\|^{2}
$$

## Orthogonal Matching pursuit

$$
r_{0}=\hat{y}, \quad w_{0}=0, \quad I_{0}=\emptyset
$$

for $i=1$ to $T$

- Select $j \in\{1, \ldots, d\}$ which maximizes

$$
\frac{v_{j}^{2}}{\left\|\hat{X} e_{j}\right\|^{2}}, \quad \text { with } \quad v_{j}=r_{i-1}^{\top} \hat{X} e_{j}
$$

- $I_{i}=I_{i-1} \cup\{j\}$,
- $w_{i}=\arg \min _{w}\left\|\hat{X} M_{I_{i}} w-\hat{y}\right\|^{2}$, where $\left(M_{I_{i}} w\right)_{j}=\delta_{j \in I_{i}} w_{j}$
- $r_{i}=r_{i-1}-\hat{X} w_{i}$


## Convex relaxation

$$
\min _{w} \frac{1}{n}\|\hat{X} w-\hat{y}\|^{2}+\lambda\|x\|_{2}^{2^{2}}\|w\|_{1}
$$

$\ell_{1}$-norm

$$
\|w\|_{1}=\sum_{i=1}^{d}\left|w_{i}\right|
$$

- Modeling
- Optimization


## The problem of sparsity

$\min \|w\|_{1}, \quad$ s.t. $\quad \hat{X} w=\hat{y}$


## Ridge Regression and sparsity




Unlike ridge-regression, $\ell_{1}$ regularization leads to sparsity!

## Sparse regularization

$$
\min _{w} \frac{1}{n}\|\hat{X} w-\hat{y}\|^{2}+\lambda\|w\|_{1}
$$

- Called Lasso or Basis Pursuit
- Convex but not smooth


## Optimization

- Could be solved via the subgradient method
- Objective function is composite



## Proximal methods

$$
\min _{w} E(w)+R(w)
$$

Let

$$
\operatorname{Prox}_{R}(w)=\min _{v} \frac{1}{2}\|v-w\|^{2}+R(v)
$$

and, for $w_{0}=0$

$$
w_{t}=\operatorname{Prox}_{\gamma R}\left(w_{t-1}-\gamma \nabla E\left(w_{t-1}\right)\right)
$$

## Proximal Methods (cont.)

$$
\min _{w} E(w)+R(w)
$$

Let $R: \mathbb{R}^{p} \rightarrow \mathbb{R}$ convex continuous and $E: \mathbb{R}^{p} \rightarrow \mathbb{R}$ differentiable, convex and such that

$$
\left\|\nabla E(w)-\nabla E\left(w^{\prime}\right)\right\| \leq L\left\|w-w^{\prime}\right\|
$$

(e.g. $\sup _{w}\|\underbrace{H(w)}_{\text {hessian }}\| \leq L$ ), Then for $\gamma=1 / L$,

$$
w_{t}=\operatorname{Prox}_{\gamma R}\left(w_{t-1}-\gamma \nabla E\left(w_{t-1}\right)\right)
$$

converges to a minimizer of $E+R$.

## Soft thresholding

$$
\begin{gathered}
R(w)=\lambda\|w\|_{1} \\
\left(\operatorname{Prox}_{\lambda\|\cdot\|_{1}}(w)\right)_{j}= \begin{cases}w_{j}-\lambda & w_{j}>\lambda \\
0 & w_{j} \in[-\lambda, \lambda] \\
w_{j}+\lambda & w_{j}<-\lambda\end{cases}
\end{gathered}
$$

## ISTA

$$
\begin{gathered}
w_{t+1}=\operatorname{Prox}_{\gamma \lambda\|\cdot\|_{1}}\left(w_{t}-\frac{\gamma}{n} \hat{X}^{\top}\left(\hat{X} w_{t}-\hat{y}\right)\right) \\
\left(\operatorname{Prox}_{\gamma \lambda\|\cdot\|_{1}}(w)\right)^{j}= \begin{cases}w^{j}-\gamma \lambda & w^{j}>\gamma \lambda \\
0 & w^{j} \in[-\gamma \lambda, \gamma \lambda] \\
w^{j}+\gamma \lambda & w^{j}<-\gamma \lambda\end{cases}
\end{gathered}
$$

Small coefficients are set to zero!

## Back to inverse problems

$$
\hat{X} w^{*}+\delta=\hat{y}
$$

If $x_{i}$ i.i.d. random and

$$
n \geq 2 s \log \frac{d}{s}
$$

then $\ell_{1}$ regularization reaches $w^{*}$

## Sampling theorem


$2 \omega_{0}$ samples needed


## LASSO

$$
\min _{w} \frac{1}{n}\|\hat{X} w-\hat{y}\|^{2}+\lambda\|w\|_{1}
$$

- Interpretability: variable selection!


## Variable selection and correlation

$$
\min _{w} \underbrace{\frac{1}{n}\|\hat{X} w-\hat{y}\|^{2}+\lambda\|w\|_{1}}_{\text {strietty convex }}
$$

Cannot handle correlations between the variables


## Elastic net regularization

$$
\ell_{w}+\ell_{2}
$$

## ISTA for elastic net

$$
\begin{gathered}
w_{t+1}=\operatorname{Prox}_{\gamma \lambda \alpha\|\cdot\|_{1}}\left(w_{t}-\gamma \frac{2}{n} \hat{X}^{\top}\left(\hat{X} w_{t}-\hat{y}\right)-\gamma \lambda(1-\alpha) w_{t-1}\right) \\
\quad\left(\operatorname{Prox}_{\gamma \lambda \alpha\| \| \|_{1}}(w)\right)^{j}= \begin{cases}w^{j}-\gamma \lambda \alpha & w^{j}>\gamma \lambda \alpha \\
0 & w^{j} \in[-\gamma \lambda \alpha, \gamma \lambda \alpha] \\
w^{j}+\gamma \lambda \alpha & w^{j}<-\gamma \lambda \alpha\end{cases}
\end{gathered}
$$

Small coefficients are set to zero!

## Grouping effect

Strong convexity
$\Longrightarrow$ All relevant (possibly correlated) variables are selected

## Elastic net and $\ell_{p}$ norms




$$
\frac{1}{2}\|w\|_{1}+\frac{1}{2}\|w\|^{2}=1
$$

$$
\left(\sum_{j=1}^{d}\left|w_{j}\right|^{p}\right)^{1 / p}=1
$$

$\ell_{p}$ norms are similar to elastic net but they are smooth (no "kink"!)

## This Class

- Sparsity
- Geometry
- Computations
- Variable selection and elastic net


## Next Class

- Structured Sparsity

