
Regularization Methods for Machine Learning May 02, 2017
RegML 2017, Simula – Oslo, Norway

LAB 1: Local Methods for Classification

• This lab is about local methods for binary classification on synthetic data.

• The goal of the lab is to get familiar with the k-Nearest Neighbors algorithm (kNN)
algorithm and to get a practical grasp of what we have discussed in class.

• Follow the instructions below. Think hard before you call the instructors!

Setup instructions:
Running OCTAVE or MATLAB

Download the file regml2017 lab1.zip from the syllabus on the course website
(http://lcsl.mit.edu/courses/regml/regml2017/#syllabus), extract it and
add all the sub-folders to the OCTAVE/MATLAB path. This file includes all the
code you need!

PART I: Warm up with data generation

Open the file MixGauss.m in Octave/Matlab.

• I.A The function MixGauss(means, sigmas, n) generates dataset [X,Y], where
X is composed of mixed classes, each class being distributed according to a Gaussian
law, with given means and variance. The points in the dataset X are numerated
from 1 to n, and Y represents the label of each point. Have a look at the code or,
for a quick help, type help MixGauss in the shell.
Hint: if the command help MixGauss fails, this means that you haven’t set up
correctly your current directory.
Hint: in Octave, to quit the help mode, type q.

• I.B Type in the shell the following commands:

[X, Y] = MixGauss([[0;0],[1;1]],[0.5,0.25],80);

figure(1); title('dataset 1');

scatter(X(:,1),X(:,2),50,Y,'filled');

You can type help scatter to see what the parameters mean.

• I.C Now, you are going to generate a more complex dataset, following the instruc-
tions below. This dataset will be referred hereafter as training dataset.

1

http://lcsl.mit.edu/courses/regml/regml2017/#syllabus

◦ Call MixGauss with the appropriate parameters

[Xtr,Ytr]=MixGauss(....)

to produce a training dataset with four classes: the classes must live in the
2D space, be centered on the corners of the unit square (0,0), (0,1), (1,1),
(1,0), and all with variance 0.3. The number of points in the dataset is up to
you.

◦ Use the function scatter to plot this dataset.

◦ Transform the data into a 2-class problem, where the data on opposite corners
are labeled the same, and where these labels are −1 and +1. Do this by just
modifying Ytr, and verify that you did it well by plotting the data.
Hint: if you produced the data following the centers order provided above,
you may do: Ytr = 2*mod(Ytr,2)−1;. Otherwise, you may also use oper-
ations of the form Ytr(Ytr==4)=−1;.

• I.D Following the same procedure as in section I.C, generate a new set of data
[Xte,Yte], hereafter called test dataset, following the same distribution, and la-
beled in the same way in {−1,+1}.

PART II: The kNN classifier

The k-Nearest Neighbors algorithm (kNN) assigns to a test point the most frequent label
among its k closest neighbors.

• II.A Have a look at the code of the function kNNClassify, by looking either in
kNNClassify.m or typing help kNNClassify in the shell.

• II.B Use kNNClassify on the previously generated 2-class data from section I.C
and I.D. Pick yourself a ”reasonable” k. Below we propose three ways of evaluating
the quality of the prediction made by the kNN method. Try each of them, and see
the influence of the parameter k in the quality of the prediction.

◦ II.B1 Evaluating the prediction (plotting the data). Plot the test data Xte

twice, once with its true labels Yte, and once with the predicted labels Ypred.
A possible way to do:

figure;

scatter(Xte(:,1),Xte(:,2),50,Yte,'filled');

hold on;

scatter(Xte(:,1),Xte(:,2),70,Ypred,'o');

2

◦ II.B2 Evaluating the prediction (measure the percentage error). Compare
the predicted labels with the true ones. A possible way to do:

sum(Ypred∼=Yte)./size(Yte,1)

◦ II.B3 Evaluating the prediction (visualizing the separating function). To
visualize the separating function (and thus get a more general view of what
areas are associated with each class), use the routine separatingFkNN. You
may use help separatingFkNN in the shell, or look directly at the code.

PART III: Parameter selection - What is a good value for k?

So far we selected manually the parameter k. Now we want an automatic policy to
choose it.

• III.A Perform a hold out cross validation procedure on the available training data.
You may want to use the function holdoutCVkNN available in the zip file. Plot the
training and validation errors for the different values of k.

• III.B Add noise to the data by randomly flipping the labels on the training set,
and call it Ytr noisy. You can use the function flipLabels to do that. How
does the validation error behave now with respect to k?
Note: Keep track of the best k, and the corresponding validation error. You will
need it in III.D.

• III.C What happens for different values of p (percentage of points held out) and
rep (number of repetitions of the experiment)?

• III.D For now we have been using the training set to obtain a classifier. Now we
want to evaluate its performance by applying it to an independent test set.

◦ Consider the test dataset [Xte,Yte] generated in I.D, and add noise to Yte

as you did in III.B, to create [Xte,Yte noisy].

◦ Take the best k you obtained by hold out cross validation in III.B, and use it
to get a prediction from Xtr,Ytrnoisy,Xte, as you did in II.

◦ Evaluate the prediction with respect to Yte noisy (as you did in II.B2), and
compare it to the validation error you had in III.B.

PART IV: What is a good dataset?

• IV.A Evaluate the results as the size of the training set grows n=10,20,50,100,300,...
Keep in mind that k needs to be adjusted chosen accordingly.

• IV.B Generate more complex datasets with MixGauss function, for instance by
choosing a larger variance during the data generation part.

3

