Random Moments for Sketched Statistical Learning

G. Blanchard

Universität Potsdam, Institut für Mathematik

Joint work with: R. Gribonval, N. Keriven, Y. Traonmilin (INRIA Rennes)
The sketched learning approach

A framework for sketched learning

Two examples
 Sketched PCA
 Sketched clustering

How to construct a sketching operator
OUTLINE

1️⃣ The sketched learning approach

2️⃣ A framework for sketched learning

3️⃣ Two examples
 - Sketched PCA
 - Sketched clustering

4️⃣ How to construct a sketching operator
CLASSICAL MODEL FOR LEARNING

- Each training data point stored as a d-vector
- Training collection $X = (x_1, \ldots, x_n)$ seen as a (d, n) matrix
CLASSICAL MODEL FOR LEARNING

- Each training data point stored as a d-vector
- Training collection $\mathbf{X} = (x_1, \ldots, x_n)$ seen as a (d, n) matrix
- Usual abstract approach (decision theory):
 - Want to find a predictor ("hypothesis") $h \in \mathcal{H}$ suited to data
 - Performance on data point x measured by loss function $\ell(x, h)$
 - Goal is to minimize averaged loss and approximate the minimizer

$$h^* = \underset{h \in \mathcal{H}}{\operatorname{Arg Min}} \mathcal{R}(h) = \underset{h \in \mathcal{H}}{\operatorname{Arg Min}} \mathbb{E}[\ell(X, h)]$$
CLASSICAL MODEL FOR LEARNING

- Each training data point stored as a \(d\)-vector
- Training collection \(X = (x_1, \ldots, x_n)\) seen as a \((d, n)\) matrix
- Usual abstract approach (decision theory):
 - Want to find a predictor ("hypothesis") \(h \in \mathcal{H}\) suited to data
 - Performance on data point \(x\) measured by loss function \(\ell(x, h)\)
 - Goal is to minimize averaged loss and approximate the minimizer

\[
h^* = \text{Arg Min}_{h \in \mathcal{H}} \mathcal{R}(h) = \text{Arg Min}_{h \in \mathcal{H}} \mathbb{E}[\ell(X, h)]
\]

- Assuming \((x_1, \ldots, x_n)\) are drawn i.i.d., natural proxy is empirical risk minimizer

\[
\hat{h}_{\text{ERM}} = \min_{h \in \mathcal{H}} \hat{\mathcal{R}}(h) = \min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \ell(x_i, h)
\]

(can possibly be combined with regularization)
CLASSICAL FRAMEWORK

\[h \in \mathcal{H} \]

\[\hat{R}(h) = \frac{1}{n} \sum_{i=1}^{n} \ell(x_i, h) \]

Data Learning

Storage cost: \(O(nd) \)

Computation cost: \(O((nd)^{\kappa}) \)

Stochastic gradient can improve computation bottlenecks but usually requires several data passes
SKETCHED LEARNING APPROACH

\[\sum_{i=1}^{n} \Phi_i(x_i) \]

Data

Sketch (Empirical moments)

- Storage cost after sketching: \(O(m) \)
- Computation cost: hopefully polynomial in \(m \)
- Sketch can be updated very easily
- Which moments \(\Phi_i \)? How large should \(m \) be?

\[h \in \mathcal{H} \]

Learn?

Arg Min \(\hat{R}(h) \) with \(h \in \mathcal{H} \)
FIRST CONSIDERATIONS

▸ In the classical approach, learning theory guarantees are of the form

\[
\sup_{h \in \mathcal{H}} \left| \mathcal{R}(h) - \hat{\mathcal{R}}(h) \right| \leq \varepsilon(n),
\]

with high probability, e.g. \(\varepsilon(n) = O\left(\sqrt{\frac{\gamma}{n}}\right) \) for a hypothesis space of metric dimension \(\gamma \).
FIRST CONSIDERATIONS

In the classical approach, learning theory guarantees are of the form

\[\sup_{h \in \mathcal{H}} |\mathcal{R}(h) - \hat{\mathcal{R}}(h)| \leq \varepsilon(n), \]

with high probability, e.g. \(\varepsilon(n) = O\left(\sqrt{\frac{\gamma}{n}}\right) \) for a hypothesis space of metric dimension \(\gamma \).

This implies that the ERM estimator satisfies the risk bound

\[\mathcal{R}(\hat{h}_{ERM}) \leq \mathcal{R}(h^*) + \varepsilon(n). \]
FIRST CONSIDERATIONS

- In the classical approach, learning theory guarantees are of the form

\[
\sup_{h \in \mathcal{H}} \left| \mathcal{R}(h) - \hat{\mathcal{R}}(h) \right| \leq \varepsilon(n),
\]

with high probability, e.g. \(\varepsilon(n) = O\left(\sqrt{\frac{\gamma}{n}}\right) \) for a hypothesis space of metric dimension \(\gamma \).

- This implies that the ERM estimator satisfies the risk bound

\[
\mathcal{R}(\hat{h}_{ERM}) \leq \mathcal{R}(h^*) + \varepsilon(n).
\]

- To preserve this property up to constant factor for an estimator \(\tilde{h}_{Sketched} \) it is sufficient to ensure that

\[
\left| \mathcal{R}(\hat{h}_{ERM}) - \mathcal{R}(\tilde{h}_{Sketched}) \right| \lesssim \sup_{h \in \mathcal{H}} \left| \mathcal{R}(h) - \hat{\mathcal{R}}(h) \right|.
\]
A NAIVE APPROACH

► A first thought is to discretize the hypothesis space into \(h_1, \ldots, h_m \) and take \(\Phi_i(x) = \ell(x, h_i), i = 1, \ldots, m \).
► Then we simply have

\[
\mathbb{E}[\Phi_i(X)] = \frac{1}{n} \sum_{j=1}^{n} \ell(x_j, h_i) = \hat{R}(h_i), \quad i = 1, \ldots, m.
\]

► With the moment information, we can replace ERM by “discretized ERM” over \(h_1, \ldots, h_m \).
A naive approach

- A first thought is to discretize the hypothesis space into h_1, \ldots, h_m and take $\Phi_i(x) = \ell(x, h_i)$, $i = 1, \ldots, m$.
- Then we simply have

$$\mathbb{E}[\Phi_i(X)] = \frac{1}{n} \sum_{j=1}^{n} \ell(x_j, h_i) = \hat{R}(h_i), \quad i = 1, \ldots, m.$$

- With the moment information, we can replace ERM by “discretized ERM” over h_1, \ldots, h_m.
- To ensure $|\mathcal{R}(\hat{h}_{ERM}) - \mathcal{R}(\tilde{h}_{\text{disc.ERM}})| \leq \varepsilon(n)$, require (h_1, \ldots, h_m) to be an $\varepsilon(n)$-covering of the space \mathcal{H} (say for supremum norm).
- If \mathcal{H} is of metric dimension γ a covering typically requires $m = O(\varepsilon^{-\gamma}) = O(n^{\gamma/2})$, seems hopeless!
Consider “trivial” example $\ell(x, h) = \|x - h\|^2$, goal is to learn mean $h^* = \mathbb{E}[X]$; obviously only need to store only the empirical mean

$\hat{\mathbb{E}}[h(X)] = \frac{1}{n} \sum_{i=1}^{n} x_i$ i.e. $m = 1$!
Consider “trivial” example $\ell(x, h) = \| x - h \|^2$, goal is to learn mean $h^* = \mathbb{E}[X]$; obviously only need to store only the empirical mean $\hat{\mathbb{E}}[h(X)] = \frac{1}{n} \sum_{i=1}^{n} x_i$ i.e. $m = 1$!

Can this phenomenon be generalized?
Example 2: PCA. Since we only need the estimated (covariance) matrix to find PCA directions, we only need to keep moments of order 2 ($m = O(d^2)$).

We can even hope do to better by using low-rank approximations of the covariance. Using random projections on Gaussian vectors is a well-known mean to this goal.
Example 3: We will be interested in learning goals where the target cannot be easily represented in terms of moments, i.e. k-means/k-medians.
OUTLINE

1 The sketched learning approach

2 A framework for sketched learning

3 Two examples
 Sketched PCA
 Sketched clustering

4 How to construct a sketching operator
Let \mathcal{M} denote the set of probability measures on $\mathcal{X} = \mathbb{R}^d$.

Define the Risk Operator

$$\mathcal{R}(\pi, h) = \mathbb{E}_{X \sim \pi} [\ell(X, h)].$$

Note that the empirical risk is

$$\hat{\mathcal{R}}(h) = \mathcal{R}(\hat{\pi}_n, h), \quad \text{with} \quad \hat{\pi}_n = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i} \quad \text{(empirical measure)}.$$

Observe that $\mathcal{R}(\pi, h)$ is linear in π.

AN ABSTRACT FRAMEWORK

- Let \mathcal{M} denote the set of probability measures on $\mathcal{X} = \mathbb{R}^d$.
- Define the **Risk Operator**

\[R(\pi, h) = \mathbb{E}_{X \sim \pi}[\ell(X, h)]. \]

Note that the empirical risk is

\[\hat{R}(h) = R(\hat{\pi}_n, h), \quad \text{with} \quad \hat{\pi}_n = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i} \ (\text{empirical measure}). \]

- Observe that $R(\pi, h)$ is linear in π.
- Given $\Phi(x) = (\Phi_1(x), \ldots, \Phi_m(x))$ define the **sketching operator**

\[\mathcal{A}_{\Phi}(\pi) = \mathbb{E}_{X \sim \pi}[\Phi(X)]. \]

The data sketch is $s = \hat{\mathbb{E}}[\Phi(X)] = \mathcal{A}_{\Phi}(\hat{\pi}_n)$.
- Note that \mathcal{A}_Φ is a linear operator on probability measures.
APPROACH (FORMAL VERSION)

- Sketch step:

\[s = A_\phi(\hat{\pi}_n) \in \mathbb{R}^m. \]
APPROACH (FORMAL VERSION)

- **Sketch step:**

 \[s = \mathcal{A}_\phi(\hat{\pi}_n) \in \mathbb{R}^m. \]

- **Reconstruction ("decoding") from sketch step:**

 \[s \mapsto \Delta[s] =: \tilde{\pi} \in \mathcal{M}. \]

 This formally reconstructs a probability distribution \(\tilde{\pi} \) by applying the "decoder" \(\Delta \) to the sketch.
APPROACH (FORMAL VERSION)

- **Sketch step:**
 \[
 s = A_\phi(\hat{\pi}_n) \in \mathbb{R}^m.
 \]

- **Reconstruction ("decoding") from sketch step:**
 \[
 s \mapsto \Delta[s] =: \tilde{\pi} \in \mathcal{M}.
 \]
 This formally reconstructs a probability distribution \(\tilde{\pi}\) by applying the "decoder" \(\Delta\) to the sketch.

- **Approximate learning step:**
 \[
 \tilde{h} = \text{Arg Min}_{h \in \mathcal{H}} \mathcal{R}(\tilde{\pi}, h).
 \]
Remember from initial considerations we aim (ideally) at
\[\left| \mathcal{R}(\hat{h}_{ERM}, \pi) - \mathcal{R}(\tilde{h}_{Sketched}, \pi) \right| \lesssim \sup_{h \in \mathcal{H}} \left| \mathcal{R}(h, \pi) - \mathcal{R}(h, \hat{\pi}_n) \right|. \]
Remember from initial considerations we aim (ideally) at
\[|\mathcal{R}(\hat{h}_{ERM}, \pi) - \mathcal{R}(\tilde{h}_{Sketched}, \pi)| \lesssim \sup_{h \in \mathcal{H}} |\mathcal{R}(h, \pi) - \mathcal{R}(h, \hat{\pi}_n)|. \]

Since \(\hat{h}_{ERM} \) and \(\tilde{h}_{Sketched} \) are two ERMs based on the true empirical \(\hat{\pi}_n \) and its reconstruction \(\tilde{\pi} \), a sufficient condition for the above is
\[\sup_{h \in \mathcal{H}} |\mathcal{R}(h, \pi) - \mathcal{R}(h, \tilde{\pi})| \lesssim \sup_{h \in \mathcal{H}} |\mathcal{R}(h, \pi) - \mathcal{R}(h, \hat{\pi}_n)|. \]
Remember from initial considerations we aim (ideally) at
\[|\mathcal{R}(\hat{h}_{ERM}, \pi) - \mathcal{R}(\tilde{h}_{Sketched}, \pi)| \lesssim \sup_{h \in \mathcal{H}} |\mathcal{R}(h, \pi) - \mathcal{R}(h, \hat{\pi}_n)|. \]

Since \(\hat{h}_{ERM} \) and \(\tilde{h}_{Sketched} \) are two ERMs based on the true empirical \(\hat{\pi}_n \) and its reconstruction \(\tilde{\pi} \), a sufficient condition for the above is
\[\sup_{h \in \mathcal{H}} |\mathcal{R}(h, \pi) - \mathcal{R}(h, \tilde{\pi})| \lesssim \sup_{h \in \mathcal{H}} |\mathcal{R}(h, \pi) - \mathcal{R}(h, \hat{\pi}_n)|. \]

Using notation \(\|\rho\|_{\mathcal{L}(\mathcal{H})} := \sup_{h \in \mathcal{H}} |\mathcal{R}(h, \rho)| \), rewrite as
\[\|\pi - \Delta(\mathcal{A}_\Phi(\pi'))\|_{\mathcal{L}(\mathcal{H})} \lesssim \|\pi - \pi'\|_{\mathcal{L}(\mathcal{H})}. \]

Since the reconstruction is obtained from the sketch information only, it is reasonable to aim at
\[\|\pi - \Delta(\mathcal{A}_\Phi(\pi'))\|_{\mathcal{L}(\mathcal{H})} \lesssim \|\mathcal{A}_\Phi(\pi - \pi')\|_2. \]
Assume we have a “model” $\mathcal{S} \subset \mathcal{M}$ so that the sketching operator satisfies the following lower restricted isometry property:

$$\forall \pi, \pi' \in \mathcal{S} \quad \|\pi - \pi'\|_{L(\mathcal{H})} \leq C_A \|A(\pi - \pi')\|_2.$$ \text{(LRIP)}
Assume we have a “model” $\mathcal{S} \subset \mathcal{M}$ so that the sketching operator satisfies the following lower restricted isometry property:

$$\forall \pi, \pi' \in \mathcal{S} \quad \|\pi - \pi'\|_{\mathcal{L}(\mathcal{H})} \leq C_A \|A(\pi - \pi')\|_2.$$ \hspace{1cm} (LRIP)

Then the “ideal decoder”

$$\Delta(s) = \text{Arg Min}_{\pi \in \mathcal{S}} \|s - A(\pi)\|_2$$

satisfies the following instance optimality property for any π, π':

$$\|\pi - \Delta(A(\pi'))\|_{\mathcal{L}(\mathcal{H})} \lesssim d(\pi, \mathcal{S}) + \|A(\pi - \pi')\|_2,$$

with

$$d(\pi, \mathcal{S}) = \inf_{\sigma \in \mathcal{S}} \left(\|\pi - \sigma\|_{\mathcal{L}(\mathcal{H})} + 2C_A \|A(\pi - \sigma)\|_2\right).$$

(Conversely, the above property implies a LRIP inequality).

(Bourrier et al, 2014)
Define suitable restricted model for distributions \mathcal{G}. Generally it should include distributions whose risk vanishes.
Define suitable restricted model for distributions \mathcal{G}. Generally it should include distributions whose risk vanishes.

Find suitable sketching dimension m and features Φ so that the corresponding sketching operator A_Φ satisfies a LRIP inequality, restricted to model \mathcal{G}.

For theory: interpret the resulting instance optimality bound in terms of the learning risk.

For practice: find suitable approximation of the ideal decoder if it is computationally too demanding.
Define suitable restricted model for distributions \mathcal{G}. Generally it should include distributions whose risk vanishes.

Find suitable sketching dimension m and features Φ so that the corresponding sketching operator A_Φ satisfies a LRIP inequality, restricted to model \mathcal{G}.

Define the ideal decoder from sketch s

$$\Delta(s) = \operatorname{Arg\, Min}_{\pi \in \mathcal{G}} \| s - A_\Phi(\pi) \|_2.$$

For theory: interpret the resulting instance optimality bound in terms of the learning risk.

For practice: find suitable approximation of the ideal decoder if it is computationally too demanding.
OUTLINE

1. The sketched learning approach
2. A framework for sketched learning
3. Two examples
 Sketched PCA
 Sketched clustering
4. How to construct a sketching operator
WARM UP: SKETCHED PCA

▶ The risk is the PCA reconstruction error

\[R_{PCA}(\pi, h) = \mathbb{E}_{X \sim \pi} \left[\|X - P_h X\|_2^2 \right], \]

where hypothesis space \(\mathcal{H} = \) linear subspaces of dimension \(k \) and \(P_h = \) orthogonal projector onto \(h \).
Warm up: sketched PCA

- The risk is the PCA reconstruction error
 \[R_{PCA}(\pi, h) = \mathbb{E}_{X \sim \pi} \left[\| X - P_h X \|_2^2 \right], \]
 where hypothesis space \(\mathcal{H} = \) linear subspaces of dimension \(k \) and \(P_h \) = orthogonal projector onto \(h \).
- To construct \(\mathcal{A}_\Phi \), use a linear operator \(\mathcal{M} \) to \(\mathbb{R}^m \) satisfying the RIP
 \[1 - \delta \leq \frac{\| \mathcal{M}(M) \|_2^2}{\| M \|_{Frob}^2} \leq 1 + \delta \]
 for all matrices \(M \) of rank less than \(k \).
 \((m = O(kd)\) using random linear operator, Candès and Plan 2011)
WARM UP: SKETCHED PCA

- The risk is the PCA reconstruction error
 \[
 R_{PCA}(\pi, h) = \mathbb{E}_{X \sim \pi} \left[\| X - P_hX \|_2^2 \right],
 \]
 where hypothesis space \mathcal{H} = linear subspaces of dimension k and P_h = orthogonal projector onto h.

- To construct A_{Φ}, use a linear operator \mathcal{M} to \mathbb{R}^m satisfying the RIP
 \[
 1 - \delta \leq \frac{\| \mathcal{M}(M) \|_2^2}{\| M \|_{\text{Frob}}^2} \leq 1 + \delta
 \]
 for all matrices M of rank less than k.
 ($m = O(kd)$ using random linear operator, Candès and Plan 2011)

- Sketch: $A_{\Phi}(\hat{\pi}_n) = \mathcal{M}(\hat{\Sigma}_n)$ (apply \mathcal{M} to empirical covar. matrix $\hat{\Sigma}$.)

- Reconstruct from a sketch s: find
 \[
 \hat{\Sigma} = \text{Arg Min} \| s - \mathcal{M}(M) \|_2 \text{ s.t. } \text{rank}(M) \leq k
 \]

- Output: $\tilde{h} = \text{space spanned by } k \text{ first eigenvectors of } \hat{\Sigma}.$
THEORETICAL GUARANTEE

For any distribution π on $B(0,R)$, we have the bound (w.h.p. over data sampling)

$$R_{PCA}(\pi, \tilde{h}) - R_{PCA}(\pi, h^*) \leq C \left(\sqrt{k} R_{PCA}(\pi, h^*) + R^2 \sqrt{\frac{k}{n}} \right).$$

- independent of total data dimension
- the first factor \sqrt{k} may be spared using more precise results from low rank matrix sensing (also convex relaxation of reconstruction program for better computational efficiency)
SKETCHED CLUSTERING: SETTING

- Consider k-means or k-medians. Assume data is bounded by R.

- **Hypothesis space:** $\mathcal{H} = \mathcal{H}_{k,2\varepsilon,R}$, set of cluster centroids $h = (c_1, \ldots, c_k)$ that are R-bounded and pairwise 2ε-separated.

- **Loss function**

$$\ell(x, h) = \min_{1 \leq i \leq k} \|x - c_i\|_p^p,$$

with $p = 1$ for k-medians, $p = 2$ for k-means.
SKETCHED CLUSTERING: SETTING

- Consider k-means or k-medians. Assume data is bounded by R.

- **Hypothesis space:** $\mathcal{H} = \mathcal{H}_{k,2\varepsilon,R}$, set of cluster centroids $h = (c_1, \ldots, c_k)$ that are R-bounded and pairwise 2ε-separated.

- **Loss function**
 \[
 \ell(x, h) = \min_{1 \leq i \leq k} \|x - c_i\|_2^p,
 \]
 with $p = 1$ for k-medians, $p = 2$ for k-means.

- **Restricted model:** $\mathcal{S} = \mathcal{S}_{k,2\varepsilon,R}$ set of k-point distributions whose support is in $\mathcal{H}_{k,2\varepsilon,R}$.

SKETCHED CLUSTERING: SKETCHING

- Fourier features: consider scaled Fourier features

\[\Phi_\omega(x) = \frac{C_\omega}{\sqrt{m}} e^{i\omega^t x}, \]

where \(C_\omega \approx d/((1 + \varepsilon\|\omega\|) \log k). \)
SKETCHED CLUSTERING: SKETCHING

► **Fourier features:** consider scaled Fourier features

\[
\Phi_\omega(x) = \frac{C_\omega}{\sqrt{m}} e^{i\omega^t x},
\]

where \(C_\omega \approx d/((1 + \varepsilon \|\omega\|) \log k) \).

► **Random frequency vectors:** draw \(\omega_1, \ldots, \omega_m \) i.i.d. in \(\mathbb{R}^d \) from the distribution with density

\[
\Lambda(\omega) \propto (1 + \varepsilon^2 \|\omega\|^2) \exp(-\varepsilon^2 \|\omega\|^2/(2 \log k)).
\]

► The sketching operator \(A_\Phi \) corresponds to the random Fourier features \((\Phi_{\omega_i}), i = 1, \ldots, m \).
SKETCHED CLUSTERING: RECONSTRUCTION

- **Reconstruct from a sketch \(s \):** find

\[
\tilde{\pi} = \arg \min_{\pi \in \mathcal{S}_{k,2\varepsilon,R}} \| s - A_{\Phi}(\pi) \|_2.
\]

- **Output:** centroids given by support of \(\tilde{\pi} \).
SKETCHED CLUSTERING: RECONSTRUCTION

- **Reconstruct from a sketch s:** find
 \[
 \tilde{\pi} = \operatorname{Arg Min}_{\pi \in \mathcal{S}_{k, 2\varepsilon, R}} \| s - A_\phi(\pi) \|_2.
 \]

- **Output:** centroids given by support of $\tilde{\pi}$.

- **Theoretical guarantee on reconstruction:** if
 \[
 m \geq k^2 d^3 \text{polylog}(k, d) \log \left(\frac{R}{\varepsilon} \right),
 \]
 then for any distribution π on $B(0, R)$, with high probability on the draw of frequencies and of the data, it holds
 \[
 \mathcal{R}(\pi, \tilde{h}) - \mathcal{R}(\pi, h^*) \lesssim \frac{R^p \sqrt{k \log k}}{\varepsilon} \mathcal{R}(\pi, h^*)^{1/p} + \frac{R^p d \sqrt{k \log k}}{\sqrt{n}}.
 \]
SKETCHED CLUSTERING: EXPERIMENTS

Simplifications (or cut corners...) for experiments:

- Use regular Gaussian density for frequency drawing (no weighting)
- Use heuristic greedy search for the reconstruction operator
- Ignore the 2ϵ-separation constraint for reconstruction
SKETCHED CLUSTERING: EXPERIMENTS

Data: mixture of 10 Gaussians with uniform weights and centers drawn from a Gaussian

![Normalized k-means risk, on $n = 10^4 k$ points uniformly drawn in $[0, 1]^d$, $d = 10$ (left), $k = 10$ (right).](image)

Normalized k-means risk, on $n = 10^4 k$ points uniformly drawn in $[0, 1]^d$, $d = 10$ (left), $k = 10$ (right).
SKETCHED CLUSTERING: EXPERIMENTS

Relative time, memory and k-means risk of CKM with respect to k-means (10^0 represents the k-means result). ($d = 10$)
OUTLINE

1. The sketched learning approach
2. A framework for sketched learning
3. Two examples
 - Sketched PCA
 - Sketched clustering
4. How to construct a sketching operator
CONSTRUCTING A SUITABLE SKETCHING OPERATOR

- **Core of approach:** finding a sketching operator A_Φ satisfying LRIP.
CONSTRUCTING A SUITABLE SKETCHING OPERATOR

- **Core of approach:** finding a sketching operator A_Φ satisfying LRIP.

- Use as intermediary a kernel Hilbert norm $\|.|_\kappa$ satisfying LRIP:

 $$\forall \pi, \pi' \in \mathcal{S} \quad \|\pi - \pi'\|_{\mathcal{L}(\mathcal{H})} \lesssim \|\pi - \pi'\|_\kappa,$$

 where κ is a reproducing kernel and $\|\pi\|_\kappa^2 = \mathbb{E}_{X, X' \sim \pi \otimes^2 [\kappa(X, X')]}.$

 - Assume on the other hand the following representation holds:
 $$\kappa(x, x') = \mathbb{E}_{\omega \sim \Lambda} [\phi_\omega(x) \phi_\omega(x')]$$
 where (ϕ_ω) is a family of complex-valued feature functions.

 - Strategy: sample random features $\omega_i \sim \Lambda$, ensuring (w.h.p.) the corresponding sketching operator delivers good enough approximation to $\|.|_\kappa$, i.e.
 $$\forall \pi, \pi' \in \mathcal{S} \quad \|\pi - \pi'\|_\kappa \lesssim \|A_\Phi(\pi - \pi')\|_2.$$
CONSTRUCTING A SUITABLE SKETCHING OPERATOR

Core of approach: finding a sketching operator A_Φ satisfying LRIP.

Use as intermediary a kernel Hilbert norm $\| \cdot \|_\kappa$ satisfying LRIP:

$$\forall \pi, \pi' \in \mathcal{S} \quad \| \pi - \pi' \|_{\mathcal{L}(\mathcal{H})} \lesssim \| \pi - \pi' \|_\kappa,$$

where κ is a reproducing kernel and $\| \pi \|_\kappa^2 = \mathbb{E}_{X, X' \sim \pi \otimes \pi} [\kappa(X, X')]$.

Assume on the other hand the following representation holds:

$$\kappa(x, x') = \mathbb{E}_{\omega \sim \Lambda} \left[\phi_\omega(x) \overline{\phi_\omega(x')} \right],$$

where (ϕ_ω) is a family of complex-valued feature functions.
CONSTRUCTING A SUITABLE SKETCHING OPERATOR

- **Core of approach:** finding a sketching operator A_Φ satisfying LRIP.

- **Use as intermediary** a kernel Hilbert norm $\| \cdot \|_\kappa$ satisfying LRIP:
 \[\forall \pi, \pi' \in \mathcal{S} \quad \| \pi - \pi' \|_{L(H)} \lesssim \| \pi - \pi' \|_\kappa, \]
 where κ is a reproducing kernel and $\| \pi \|_\kappa^2 = \mathbb{E}_{X, X' \sim \pi \otimes \pi}[\kappa(X, X')]$.

- **Assume on the other hand** the following representation holds:
 \[\kappa(x, x') = \mathbb{E}_{\omega \sim \Lambda} \left[\phi_\omega(x) \overline{\phi_\omega(x')} \right], \]
 where (ϕ_ω) is a family of complex-valued feature functions.

- **Strategy:** sample random features $\omega_i \sim \Lambda$, ensuring (w.h.p.) the corresponding sketching operator delivers good enough approximation to $\| \cdot \|_\kappa$, i.e.
 \[\forall \pi, \pi' \in \mathcal{S} \quad \| \pi - \pi' \|_\kappa \lesssim \| A_\Phi(\pi - \pi') \|_2. \]
Uniform approximation of the kernel norm by the sketching norm obtained via Bernstein’s inequality + covering argument on the normalized secant set

$$S_{\| \cdot \|_\kappa}(G) = \left\{ \frac{\pi - \pi'}{\| \pi - \pi' \|_\kappa} \middle| \pi, \pi' \in G \right\}.$$
DIMENSION OF SKETCH REQUIRED

- Uniform approximation of the kernel norm by the sketching norm obtained via Bernstein's inequality + covering argument on the normalized secant set

\[S_{\|\cdot\|_\kappa}(\mathcal{G}) = \left\{ \frac{\pi - \pi'}{\left\| \pi - \pi' \right\|_\kappa} \mid \pi, \pi' \in \mathcal{G} \right\} \]

- More precisely we find the sufficient condition

\[m \gtrsim \log \mathcal{N}(S_{\|\cdot\|_\kappa}(\mathcal{G}), d_{\mathcal{F}}, 1/2) , \]

where \(d_{\mathcal{F}}(\pi, \pi') = \sup_{\omega} \left| \mathbb{E}_{X \sim \pi} [\Phi_\omega(X)]^2 - \mathbb{E}_{X \sim \pi'} [\Phi_\omega(X)]^2 \right| \).
Uniform approximation of the kernel norm by the sketching norm obtained via Bernstein’s inequality + covering argument on the normalized secant set

\[S_{\|\cdot\|_\kappa}(\mathcal{S}) = \left\{ \frac{\pi - \pi'}{\|\pi - \pi'\|_{\kappa}} \mid \pi, \pi' \in \mathcal{S} \right\}. \]

More precisely we find the sufficient condition

\[m \gtrsim \log \mathcal{N}(S_{\|\cdot\|_\kappa}(\mathcal{S}), d_{\mathcal{F}}, 1/2), \]

where \(d_{\mathcal{F}}(\pi, \pi') = \sup_\omega \left| \mathbb{E}_{X \sim \pi} [\Phi_\omega(X)]^2 - \mathbb{E}_{X \sim \pi'} [\Phi_\omega(X)]^2 \right| \).

Finally, the vectorial form of Bernstein’s inequality can be used again (this time on the data) to control the estimation noise \(\|A_\Phi(\pi - \widehat{\pi}_n)\|_2 \).
APPLICATION TO MIXTURES AND CLUSTERING

Overview of remaining steps to obtain bound on risk and sketch dimension:

- **Establish** the LRIP between the risk norm $\| \cdot \|_{L(H)}$ and the kernel norm $\| \cdot \|_\kappa$ on the model \mathcal{G}.
 - Results obtained for general family of RBF-type kernels and models given by k-mixtures of distributions.
Overview of remaining steps to obtain bound on risk and sketch dimension:

- **Establish** the LRIP between the risk norm $\|\cdot\|_{\mathcal{L}(\mathcal{H})}$ and the kernel norm $\|\cdot\|_\kappa$ on the model \mathcal{G}.
 - Results obtained for general family of RBF-type kernels and models given by k-mixtures of distributions

- **Bound the (log) covering numbers**: requires some classical inequalities between covering numbers
APPLICATION TO MIXTURES AND CLUSTERING

Overview of remaining steps to obtain bound on risk and sketch dimension:

- **Establish** the LRIP between the risk norm $\| \cdot \|_{\mathcal{L}(\mathcal{H})}$ and the kernel norm $\| \cdot \|_{\kappa}$ on the model \mathcal{G}.
 - Results obtained for general family of RBF-type kernels and models given by k-mixtures of distributions

- **Bound the (log) covering numbers**: requires some classical inequalities between covering numbers

- Once the instance optimality inequality is obtained, relate back the terms of the bound to the learning task (learning risk).
CONCLUSION

▶ The sketched learning framework holds promise to reduce computation and memory burden

▶ General theoretical framework based on:
 ▶ LRIP/compressed sensing recovery principles
 ▶ Kernel embeddings and random features

▶ Theoretical recovery guarantees and bounds on the sketch dimension needed

▶ Applications:
 ▶ sketched PCA
 ▶ sketched clustering
 ▶ sketched mixture of Gaussians estimation
 ▶ ... more to come?
SketchML matlab toolbox available:
(large-scale mixture learning using sketches)

http://sketchml.gforge.inria.fr/

ArXiv Preprint:

Compressive Statistical Learning with Random Feature Moments
R. Gribonval, G. Blanchard, N. Keriven, Y. Traonmilin
https://arxiv.org/abs/1706.07180