
Regularization Methods for Machine Learning Jun 21, 2018
RegML 2018, Genova, Italy

LAB 3: Sparsity-based learning

• This lab is about feature selection within the framework of sparsity based regular-
ization, using elastic net regularization.

• The aim of the lab is to play with the libraries and to get a practical grasp of what
we have discussed in class.

• Follow the instructions below.

Goal:
This lab is divided in two parts depending of their level of complexity (Beginner,
Intermediate). Your goal is to complete entirely, at least, one of the two parts.

Setup instructions:
Running OCTAVE

Download the file regml2018 lab3.zip from the syllabus on the course website
(http://lcsl.mit.edu/courses/regml/regml2018/#syllabus), extract it and
add all the sub-folders to the OCTAVE path. This file includes all the code you
need!

Toy problem

We focus on a regression problem where the target function is linear. We will
consider synthetic data generated (randomly sampled) according to a given prob-
ability distribution and affected by noise. You will have the possibility of control-
ling the sizes of training and test sets, data dimensionality and number of relevant
features.

NOTE:
In the code we use a different notation from what you have seen in the classes.
The minimized functional is:

min
β∈Rp

1

2n
‖Xβ − Y ‖2 + L2 par

�X�2

2n
‖β‖22 + L1 par‖β‖1,

where X ∈ Rn×p and Y ∈ Rn.

In addition, in some scripts the sparsity parameter L1 par can be also refer-
enced as tau, and the smoothing parameter L2 par as smooth par.

1

http://lcsl.mit.edu/courses/regml/regml2018/#syllabus


PART I: Beginner

Overture: Warm up

Open the files loadSparseDataset octave.m and learnSparse octave.m in Oc-
tave. Look at the code, and see that the first lines are dedicated to the set up of
various options and parameters. The objective of this section is to familiarize you
with the code.

• I.A In loadSparseDataset octave.m, look at the parameters and generate a
training set with the default parameters. Run then learnSparse octave.m,
with the default parameters, to start a training phase. The first figure dis-
plays the cross validation error together with the test error. The second fig-
ure displays the sparsity of the reconstructed signal depending on the chosen
L1 par. Compare the sparsity of the reconstructed signal with the original
one.
Note: In this lab we perform regression and not classification. So the error
is not a percentage error on the labels, but is measured with quantities of the
form (1/n)‖Xβpred − Y ‖2.

• I.B Train your dataset by changing now the values for L1 par and L2 par in
learnSparse octave.m.

– I.B1 With L2 par = 0 and playing with L1 par, try to obtain a sparser
or denser solution. How does the sparsity behave with respect to L1 par?

– I.B2 Repeat the experiment with a L2 par > 0. How do test error and
number of selected features vary?

• I.C Repeat the experiments of I.B1, by considering this time a noisy dataset
(you can take a noise parameter equal to 0.3). How does now behave the
sparsity? What can you say about the training error?

Allegro con brio: Analysis

Carry on the following experiments either using loadSparseDataset octave.m

and learnSparse octave.m, when it is possible, or writing appropriate scripts.

• I.D Back on the shell, have a look to the content of directory ./PROXIMAL

TOOLBOXES/L1L2 TOOLBOX. There you will find, among others, the code for
l1l2 algorithm (used for variable selection), l1l2 kcv (used for model selec-
tion with kcv or loo), l1l2 pred (for prediction on a test set).

For more information about the parameters and the usage of those scripts,
use the help.

2



Finally, you may want to have a look at file l1l2 demo simple.m for a com-
plete example of analysis. You might use it as a basis for writing your own
script(s).

• I.E (Prediction and selection) Considering elastic net regularization, we want
to observe, in a systematic way, how the training and test errors are sensitive
to the parameters, as well as the number of relevant features of the solution
(changing only one parameter at a time). To achieve this, you should try
to pick some parameters, or run iteratively over a range of parameters, by
exploiting the code contained in l1l2 demo simple.m.

– I.E1 When we change the regularization parameter L1 par associated
with the `1-norm.

– I.E2 When we change (increase or decrease) the regularization param-
eter L2 par associated with the `2-norm.
Hint: Try the following fixed parameters: 20 points of dimension 100,
with 15 relevant features, a noise level equal to 1 and L1 par=0.1.

– IE.3 The training set size grows (this is not the same than generating
different training sets with an increasing size!).
Hint: Try the same parameters as above, with L2 par=0.

– I.E4 The amount of noise on the generated data grows (the test set is
generated with the same parameter of the training).

• I.F (Large p and small n) Perform experiments similar to those above chang-
ing p (dimensionality of the points), n (number of training points) and s
(number of relevant variables). In particular, when p � n, look at how the
result behave, depending whether s < n holds or no. (try e.g n = 80 and
p = 300). Try to identify different regimes.

PART II: Intermediate

Crescendo: Data standardization

From now you can only use your own scripts.

Import the classification dataset given in part3-data.mat, which contains two
matrices: X and Y. For this you can just double click on it in the file explorer,
otherwise do:
temp=load('part3−data.mat'); X=temp.X; Y=temp.Y;

Here X ∈ Rn×p is a matrix containing n points in Rp, and Y ∈ {−1; +1}n is
generated from Y = Xβ, where β ∈ Rp is a sparse vector, meaning that it has s
nonzero components, with s being small.

3



• II.A You do not know how many relevant features generated this data. Try
to get an estimation of this number s, by using l1l2 learn, according to your
observations in part I.

• II.B An other way to try to estimate s is to measure the correlation between
the columns of X and Y . Indeed, the zero coefficients in β will ignore the
corresponding columns in X while generating Y . To do so, you might use
c=abs(corr(X,Y)); stairs(c);

If you do not see which columns of X are the more correlated with Y , you
can use [∼,I]=sort(c); to sort its values and identify the more relevant
features. You should have now a precise idea of what is s. Can you also
identify which are these s features?

• II.C Use again l1l2 learn and tune the sparsity parameter L1 par in view
to select only s features (s being your estimation from the previous question).
Look at which are the selected features in this solution. Do they correspond
to the ones you identified in II.B? If no, can you figure out why?

4


