All starts with DATA

- **Supervised:** \(\{(x_1, y_1), \ldots, (x_n, y_n)\} \),

- **Unsupervised:** \(\{x_1, \ldots, x_m\} \),

- **Semi-supervised:** \(\{(x_1, y_1), \ldots, (x_n, y_n)\} \cup \{x_1, \ldots, x_m\} \)

L.Rosasco, RegML 2020
Learning from examples

Problem: given $S^n = \{(x_1, y_1), \ldots, (x_n, y_n)\}$ find $f(x_{\text{new}}) \sim y_{\text{new}}$
Setting for the supervised learning problem

- $X \times Y$ probability space, with measure ρ.
- $S_n = (x_1, y_1), \ldots, (x_n, y_n) \sim \rho^n$, i.e. sampled i.i.d.
- $L : Y \times Y \rightarrow [0, \infty)$, measurable loss function.
- Expected risk

$$\mathcal{E}(f) = \int_{X \times Y} L(y, f(x)) \, d\rho(x, y).$$

Problem: Solve

$$\min_{f : X \rightarrow Y} \mathcal{E}(f),$$

given only S_n (ρ fixed, but unknown).
Data space

\[f : X \rightarrow Y \]

Input space \(X\) \hspace{5cm} Output space \(Y\)
Input space

X input space:

- linear spaces, e.g.
 - vectors,
 - functions,
 - matrices/operators

- “structured” spaces, e.g.
 - strings,
 - probability distributions,
 - graphs
Output space

Y output space

- linear spaces, e. g.
 - $Y = \mathbb{R}$, regression,
 - $Y = \mathbb{R}^T$, multi-task regression,
 - Y Hilbert space, functional regression,

- “structured” spaces
 - $Y = \{+1, -1\}$, classification,
 - $Y = \{1, \ldots, T\}$, multi-label classification,
 - strings,
 - probability distributions,
 - graphs
Probability distribution

Reflects *uncertainty* and *stochasticity* of the learning problem

\[\rho(x, y) = \rho_X(x) \rho(y|x), \]

- \(\rho_X \) marginal distribution on \(X \),
- \(\rho(y|x) \) conditional distribution on \(Y \) given \(x \in X \).
Regression

\[y_i = f_*(x_i) + \epsilon_i, \]

- Let \(f_* : X \to Y \), fixed function
- \(\epsilon_1, \ldots, \epsilon_n \) zero mean random variables
- \(x_1, \ldots, x_n \) random
Conditional distribution and misclassification

Classification

\[\rho(y|x) = \{ \rho(1|x), \rho(-1|x) \}, \]

Noise in classification: overlap between the classes

\[\Delta_t = \left\{ x \in X \ \bigg| \ |\rho(1|x) - \rho(-1|x)| \leq t \right\} \]
Marginal distribution and sampling

ρ_X takes into account uneven sampling of the input space
Marginal distribution, densities and manifolds

\[p(x) = \frac{d\rho_X(x)}{dx} \rightarrow p(x) = \frac{d\rho_X(x)}{d\text{vol}(x)}, \]
Loss functions

$L : Y \times Y \rightarrow [0, \infty)$,

▶ The cost of predicting $f(x)$ in place of y.

▶ Part of the problem definition $\mathcal{E}(f) = \int L(y, f(x))d\rho(x, y)$

▶ Measures the pointwise error,
Losses for regression

\[L(y, y') = L(y - y') \]

- **Square loss** \(L(y, y') = (y - y')^2 \),
- **Absolute loss** \(L(y, y') = |y - y'| \),
- **\(\epsilon \)-insensitive** \(L(y, y') = \max(|y - y'| - \epsilon, 0) \),

![Graph showing the square loss, absolute loss, and \(\epsilon \)-insensitive loss functions.](image-url)
Losses for classification

\[L(y, y') = L(-yy') \]

- 0-1 loss \(L(y, y') = 1_{\{yy' > 0\}} \)
- Square loss \(L(y, y') = (1 - yy')^2 \)
- Hinge-loss \(L(y, y') = \max(1 - yy', 0) \)
- Logistic loss \(L(y, y') = \log(1 + \exp(-yy')) \)
Losses for structured prediction

Loss specific for each learning task e.g.

- Multi-class: square loss, weighted square loss, logistic loss, . . .
- Multi-task: weighted square loss, absolute, . . .
- . . .
Expected risk

\[\mathcal{E}(f) = \mathcal{E}_L(f) = \int_{X \times Y} L(y, f(x)) d\rho(x, y) \]

note that \(f \in \mathcal{F} \) where

\[\mathcal{F} = \{ f : X \rightarrow Y \mid f \text{ measurable} \}. \]

Example \(Y = \{-1, +1\} \), \(L(y, f(x)) = 1_{\{-y f(x) > 0\}} \)

\[\mathcal{E}(f) = \mathbb{P}(\{(x, y) \in X \times Y \mid f(x) \neq y\}). \]
Target function

\[f_\rho = \arg \min_{f \in \mathcal{F}} \mathcal{E}(f), \]

can be derived for many loss functions...
Target functions in regression

square loss,

\[f_{\rho}(x) = \int_Y y d\rho(y|x) \]

absolute loss,

\[f_{\rho}(x) = \text{median } \rho(y|x), \]

where

\[\text{median } p(\cdot) = y \quad \text{s.t.} \quad \int_{-\infty}^{y} tdp(t) = \int_{y}^{+\infty} tdp(t). \]
Target functions in classification

0-1 loss,

\[f_\rho(x) = \text{sign}(\rho(1|x) - \rho(-1|x)) \]

square loss,

\[f_\rho(x) = \rho(1|x) - \rho(-1|x) \]

logistic loss,

\[f_\rho(x) = \log \frac{\rho(1|x)}{\rho(-1|x)} \]

hinge-loss,

\[f_\rho(x) = \text{sign}(\rho(1|x) - \rho(-1|x)) \]
Learning algorithms

\[S_n \rightarrow \hat{f}_n = \hat{f}_{S_n} \]

\(f_n \) estimates \(f_\rho \) given the observed examples \(S_n \)

How to measure the error of an estimator?
Excess risk

Excess Risk:

\[\mathcal{E}(\hat{f}) - \inf_{f \in \mathcal{F}} \mathcal{E}(f), \]

Consistency: For any \(\epsilon > 0 \)

\[\lim_{n \to \infty} \mathbb{P} \left(\mathcal{E}(\hat{f}) - \inf_{f \in \mathcal{F}} \mathcal{E}(f) > \epsilon \right) = 0, \]
Tail bounds, sample complexity and error bound

▶ Tail bounds: For any $\epsilon > 0, n \in \mathbb{N}$

$$\mathbb{P} \left(\mathcal{E}(\hat{f}) - \inf_{f \in \mathcal{F}} \mathcal{E}(f) > \epsilon \right) \leq \delta(n, \mathcal{F}, \epsilon)$$

▶ Sample complexity: For any $\epsilon > 0, \delta \in (0, 1]$, when $n \geq n_0(\epsilon, \delta, \mathcal{F})$

$$\mathbb{P} \left(\mathcal{E}(\hat{f}) - \inf_{f \in \mathcal{F}} \mathcal{E}(f) > \epsilon \right) \leq \delta,$$

▶ Error bounds: For any $\delta \in (0, 1], n \in \mathbb{N}$, with probability at least $1 - \delta$,

$$\mathcal{E}(\hat{f}) - \inf_{f \in \mathcal{F}} \mathcal{E}(f) \leq \epsilon(n, \mathcal{F}, \delta),$$

L. Rosasco, RegML 2020
Theorem For any \hat{f}, there exists a problem for which

$$\mathbb{E}(\mathcal{E}(\hat{f}) - \inf_{f \in \mathcal{F}} \mathcal{E}(f)) > 0$$
No free-lunch theorem continued

Theorem For any \hat{f}, there exists a ρ such that

$$\mathbb{E}(\mathcal{E}(\hat{f}) - \inf_{f \in \mathcal{F}} \mathcal{E}(f)) > 0$$

$\mathcal{F} \rightarrow \mathcal{H}$ \hspace{2cm} Hypothesis space
Hypothesis space

\[\mathcal{H} \subset \mathcal{F} \]

E.g. \(X = \mathbb{R}^d \)

\[\mathcal{H} = \{ f(x) = \langle w, x \rangle = \sum_{j=1}^{d} w_j x_j, \ | \ w \in \mathbb{R}^d, \forall x \in X \} \]

then \(\mathcal{H} \preceq \mathbb{R}^d \).
Finite dictionaries

$$D = \{ \phi_i : X \to \mathbb{R} \mid i = 1, \ldots, p \}$$

$$\mathcal{H} = \{ f(x) = \sum_{j=1}^{p} w_j \phi_j(x) \mid w_1, \ldots, w_p \in \mathbb{R}, \forall x \in X \}$$

$$f(x) = w^\top \Phi(x), \quad \Phi(x) = (\phi_1(x), \ldots, \phi_p(x))$$
This class

Learning theory ingredients
- Data space/distribution
- Loss function, risks and target functions
- Learning algorithms and error estimates
- Hypothesis space
Next class

- Regularized learning algorithm: penalization
- Statistics and computations
- Nonparametrics and kernels